Neuroscience
-
Comparative Study
P2 receptors in satellite glial cells in trigeminal ganglia of mice.
There is strong evidence for the presence of nucleotide (P2) receptors in sensory neurons, which might play a role in the transmission of pain signals. In contrast, virtually nothing is known about P2 receptors in satellite glial cells (SGCs), which are the main glial cells in sensory ganglia. We investigated the possibility that P2 receptors exist in SGCs in murine trigeminal ganglia, using Ca(2+) imaging, patch-clamp recordings, and immunohistochemistry. ⋯ Patch-clamp recordings of SGCs did not reveal any inward current due to ATP. Therefore, there was no evidence for the activation of ionotropic P2X receptors under the present conditions. The results indicate the presence of functional nucleotide (P2Y) receptors in SGCs.
-
Comparative Study
Organization of projections from the raphe nuclei to the vestibular nuclei in rats.
Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. ⋯ Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that raphe-vestibular connections are organized to selectively modulate processing in regions of the vestibular nuclear complex that receive input from specific cerebellar zones. This represents a potential mechanism whereby motor activity and behavioral arousal could influence the activity of cerebellovestibular circuits.
-
Genetic influences contribute to susceptibility to seizures and to excitotoxic injury, but it is unclear if/how these susceptibilities are linked. This study assessed the impact of genetic background on mouse strain seizure susceptibility, seizure phenotype, mortality, and hippocampal histopathology. A subcutaneous (s.c.) kainic acid multiple injection protocol was developed. ⋯ The mixed background 129/SvJXC57BL/6J group exhibited features of both parental strains. In the mouse strains tested, the duration or severity of seizure activity was not predictive of subsequent hippocampal pyramidal cell death and/or synaptic reorganization. Unlike rats, mice exhibiting prolonged high-grade KA-induced seizure activity did not develop subsequent spontaneous behavioral seizures.
-
Recently we demonstrated that a single 3-day episode of carrageenan-induced acute cutaneous inflammation can create a chronic state of increased susceptibility to inflammatory hyperalgesia. In this latent "primed" state, although there is no ongoing hyperalgesia, the hyperalgesic response to subsequent challenges with inflammatory agent (prostaglandin E2; PGE2) is greatly enhanced. Furthermore, the PGE2-induced hyperalgesia in primed skin was found to require activity of the epsilon isozyme of protein kinase C (PKCepsilon), a second messenger that is not required for PGE2-induced hyperalgesia in control animals. ⋯ PKCepsilon was found to be essential both for the development of carrageenan-induced hyperalgesic priming, as well as for the maintenance of the primed state. Furthermore, hyperalgesic priming could be induced by an agonist of PKCepsilon (pseudo-receptor octapeptide for activated PKCepsilon) at a dose that itself causes no hyperalgesia. The finding that transient inhibition of PKCepsilon can not only prevent the development of priming, but can also terminate a fully developed state of priming suggests the possibility that selective targeting PKCepsilon might be an effective new strategy in the treatment of chronic inflammatory pain.
-
The amygdaloid complex has long been implicated in seizure disorders. Yet, projection cells of the lateral amygdaloid nucleus (LA) display little spontaneous activity suggesting that this seizure prone structure is normally controlled by strong inhibitory mechanisms. This control is achieved in part by local interneurons; however, a synaptically activated, Ca(2+)-dependent K(+) (K(Ca)) conductance has recently been identified as a second major inhibitory mechanism. ⋯ Charybdotoxin and isoproterenol produced positive shifts in the reversal potential, whereas apamin did not. By contrast, all three substances decreased adaptation during spike trains elicited by depolarizing current injections. These results suggest that intermediate (IK) and small (SK) conductance K(Ca) channels limit LA projection cell excitability, with IK channels involved in controlling both the synaptic response and intrinsic excitability of these neurons, and SK channels being involved only in the latter.