Neuroscience
-
Glial cell line-derived neurotrophic factor (GDNF) is necessary for the development of sensory neurons, and appears to be critical for the survival of dorsal root ganglion (DRG) cells that bind the lectin IB4. Intrathecal infusion of GDNF has been shown to prevent and reverse the behavioral expression of experimental neuropathic pain arising from injury to spinal nerves. This effect of GDNF has been attributed to a blockade of the expression of the voltage gated, tetrodotoxin-sensitive sodium channel subtype, Na(V)1.3, in the injured DRG. ⋯ These observations suggest that high dose, exogenous GDNF has a broad neuroprotective role in injured primary afferent. The receptor(s) that mediates these effects of GDNF is not known. GDNF's ability to block neuropathic pain states is not likely to be specific to Na(V)1.3 expression.
-
Apolipoprotein (APO, gene; apo, protein) D, a member of the lipocalin family, has been implicated in several, pathological conditions but neither its physiologic function(s) nor ligand(s) has been clearly identified so far. Presuming a role in nerve de- and regeneration, several groups investigated apoD alterations in Alzheimer's disease (AD). Reported data, however, were not unanimous. ⋯ No correlation was found to amyloid deposits. Brain samples with widespread NF changes showed significantly higher apoD than cases with low Braak stages. This increase, however, was restricted to the APOE epsilon3/3 group, whereas the APOE epsilon4 group did not show significant variations in hippocampal apoD.
-
Head-direction (HD) cells in subcortical areas of the mammalian brain are tuned to a particular head direction in space; a population of such neurons forms a neural compass that may be relevant for spatial navigation. The development of neural circuits constituting the head-direction system is poorly understood. Inspired by electrophysiological experiments about the role of recurrent synaptic connections, we investigate a learning rule that teaches neurons to amplify feed-forward inputs. ⋯ That is, during head movements in darkness, neurons resemble HD cells by maintaining a fixed tuning to head direction. The proposed learning rule exhibits similarities with known forms of anti-Hebbian synaptic plasticity. We conclude that selective amplification could serve as a general principle for the synaptic development of multimodal feedback circuits in the brain.
-
Comparative Study
Methamphetamine-induced deficits of brain monoaminergic neuronal markers: distal axotomy or neuronal plasticity.
We examined the effects of methamphetamine (METH) on monoaminergic (i.e. dopamine and serotonin) axonal markers and glial cell activation in the rat brain. Our findings indicate that the loss of dopamine transporters (DAT), serotonin transporters (5-HTT), vesicular monoamine transporter type-2 (VMAT-2) and glial cell activation induced by METH in the striatum and in the central gray are consistent with a degenerative process. Our novel finding of METH effects on monoaminergic neurons in the central gray may have important implications on METH-induced hyperthermia. ⋯ In summary, our findings suggest two neurotoxic endpoints in the brain of METH-exposed animals. Brain regions exhibiting DAT and 5-HTT deficits that co-localize with decreased VMAT-2 levels and glial cell activation may represent monoaminergic terminal degeneration. However, the DAT and 5-HTT deficits in brain regions lacking a deficit in VMAT-2 and glial cell activation may reflect drug-induced modulation of these plasma membrane proteins.
-
The context in which amphetamine is administered modulates its ability to induce both behavioral sensitization and immediate early gene expression. When given in a novel test environment amphetamine produces greater levels of c-fos and arc mRNA expression in many brain regions relative to when it is given in the home cage. The purpose of the current study was to determine if environment and drug history interact to influence amphetamine-induced c-fos mRNA expression. ⋯ In contrast, there was a decrease in c-fos mRNA expression in amphetamine-pretreated animals, regardless of environmental context, in the ventral portion of the far caudal striatum. Reexposure to an environment previously paired with amphetamine produced a conditioned increase in c-fos mRNA expression in portions of the caudate-putamen, the subthalamic nucleus, the nucleus accumbens shell and a conditioned decrease in c-fos mRNA expression in the central nucleus of the amygdala. We conclude that environmental context and drug history interact to alter the basal ganglia and central extended amygdala circuitry engaged by subsequent exposure to amphetamine, or exposure to an environment previously paired with amphetamine.