Neuroscience
-
Recent evidence shows that secretory phospholipase A2 (sPLA2) may play a role in membrane fusion and fission, and may thus affect neurotransmission. The present study therefore aimed to elucidate the effects of sPLA2 on vesicle exocytosis. External application of group IIA sPLA2 (purified crotoxin subunit B or purified human synovial sPLA2) caused an immediate increase in exocytosis and neurotransmitter release in pheochromocytoma-12 (PC12) cells, detected by carbon fiber electrodes placed near the cells, or by changes in membrane capacitance of the cells. ⋯ Our recent studies showed high levels of sPLA2 activity in the normal rat hippocampus, medulla oblongata and cerebral neocortex. The sPLA2 activity in the hippocampus was significantly increased, after kainate-induced neuronal injury. The observed effects of sPLA2 on neurotransmitter release in this study may therefore have a physiological, as well as a pathological role.
-
In the present work we examined the involvement of selected P2X receptors for extracellular ATP in the onset of neuronal cell death caused by glucose/oxygen deprivation. The in vitro studies of organotypic cultures from hippocampus evidenced that P2X2 and P2X4 were up-regulated by glucose/oxygen deprivation. Moreover, we showed that ischemic conditions induced specific neuronal loss not only in hippocampal, but also in cortical and striatal organotypic cultures and the P2 receptor antagonists basilen blue and suramin prevented these detrimental effects. ⋯ P2X2 was expressed in neuronal cell bodies and fibers in the CA1 pyramidal cell layer and in the strata oriens and radiatum. Intense P2X4 immunofluorescence was localized to microglia cells. Our results indicate a direct involvement of P2X receptors in the mechanisms sustaining cell death evoked by metabolism impairment and suggest the use of selected P2 antagonists as effective neuroprotecting agents.
-
Comparative Study
Gender-specific effects of social housing on chronic stress-induced limbic Fos expression.
Stress plays an important role in the development of affective disorders. Women show a higher prevalence for these disorders then men. The course of a depressive episode is thought to be positively influenced by social support. ⋯ Amygdala nuclei were differentially affected by stress, gender and housing conditions. Also the mesolimbic dopaminergic system showed gender specific responses to stress and housing conditions. These results indicate that social support can enhance stress coping in female rats, whereas in males rats, group housing appears to increase the adverse effects of chronic stress, although the neurobiological mechanism is not simply a reduction or enhancement of stress-induced brain activation.
-
Neurotrophic factors direct axonal growth toward the target tissue by a concentration gradient, which is mediated through different tyrosine kinase cell surface receptors. In this study, well-defined concentration gradients of neurotrophic factors (NFs) allowed us to study the synergistic effect of different NFs (e.g. nerve growth factor [NGF], neurotrophin-3 [NT-3] and brain-derived neurotrophic factor [BDNF]) for axonal guidance of embryonic lumbar dorsal root ganglion cells (DRGs). ⋯ Interestingly, the combined concentration gradients of NGF and BDNF did not show any significant synergism at the concentration gradients studied. The synergism observed between NGF and NT-3 indicates that axons may be guided over a 12.5 mm distance, which is significantly greater than that of 7.5 mm calculated by us for NGF alone or that of 2 mm observed by others.
-
Previously, we demonstrated that stress-induced self-grooming behaviour in rats predicted an enhanced motivation to self-administer cocaine as determined under a progressive ratio schedule of reinforcement. The enhanced motivation of high grooming (HG) rats was associated with a reduced reactivity of dopaminergic neurons in the medial prefrontal cortex and amygdala, but not nucleus accumbens. In the present study, we studied the effect of cocaine and saline self-administration on these pre-existing differences in neurochemical profile by determining the electrically evoked release of [3H]dopamine and [14C]acetylcholine from superfused slices of the nucleus accumbens shell and core, medial prefrontal cortex and amygdala of HG and low grooming (LG) rats. ⋯ Differences in depolarisation-induced dopamine and acetylcholine release were maintained in the medial prefrontal cortex, emerged in the nucleus accumbens and dissipated in the amygdala. These results indicate that altered reactivity of mesocorticolimbic dopaminergic and cholinergic neurons due to exposure to cocaine and environmental stimuli (saline) is dependent on pre-existing neurochemical differences and displays region-specificity. These pre-existing differences and the cocaine- and environmental-induced neuroadaptations seem to act in concert to produce an enhanced motivational state to self-administer cocaine.