Neuroscience
-
Comparative Study
Nociceptin/orphanin FQ knockout mice display up-regulation of the opioid receptor-like 1 receptor and alterations in opioid receptor expression in the brain.
The opioid receptor-like 1 receptor is a novel member of the opioid receptor family and its endogenous peptide ligand has been termed nociceptin and orphanin FQ. Activation of the opioid receptor-like 1 receptor by nociceptin/orphanin FQ in vivo produces hyperalgesia when this peptide is given supraspinally but analgesia at the spinal level. Nociceptin/orphanin FQ also reverses stress-induced analgesia, suggesting that the peptide has anti-opioid properties. ⋯ Mu-Receptors also showed significant differences between genotypes whilst changes in delta- and kappa- receptors were minor. In conclusion the region-specific up-regulation of the opioid receptor-like 1 receptor indicates a tonic role for nociceptin/orphanin FQ in some brain structures and may suggest the peptide regulates the receptor expression in these regions. The changes in the opioid receptor-like 1 receptor may relate to the anxiogenic phenotype of these animals but the observed change in mu-receptors does not correlate with altered morphine responses.
-
A novel calmodulin (CaM) antagonist DY-9760e, (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate), with an apparent neuroprotective effect in vivo, potently inhibits CaM-dependent nitric oxide synthase in situ. In the present study, we determined whether DY-9760e inhibits nitric oxide (NO) production and protein nitration by peroxynitrite (ONOO(-)) formation in the hippocampal CA1 region of gerbils after transient forebrain ischemia. In freely moving gerbils, NO production after 10-minute forebrain ischemia was monitored consecutively with in vivo brain microdialysis. ⋯ Western blot and immunohistochemical analyses using an anti-nitrotyrosine antibody as a marker of ONOO(-) formation indicated a marked increase in nitrotyrosine immunoreactivity in the pyramidal neurons of the CA1 region 2 h after reperfusion, and DY-9760e significantly inhibited increased nitrotyrosine immunoreactivity. Coincident with the inhibition of the NO production and protein tyrosine nitration, pretreatment with DY-9760e rescued the delayed neuronal death in the hippocampal CA1 region. These results suggest that the inhibitory effects of DY-9760e on the NO-ONOO(-) pathway partly account for its neuroprotective effects in cerebral ischemia.
-
Comparative Study
Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats.
The pathophysiologic basis of tardive dyskinesia remains unclear, but several lines of evidence suggest that persistent neuronal changes in the basal ganglia produced by oxidative stress or glutamate toxicity may play a role, especially in the elderly. In the present study we examined whether histopathological alterations in substantia nigra are related to oral dyskinesia in a rodent model of tardive dyskinesia. Haloperidol decanoate (38 mg/kg/4 weeks) was administered to young (8 weeks) and old (38 weeks) rats for a total period of 28 weeks, and the development of vacuous chewing movements (VCM) was observed. ⋯ Some alterations were also present in the substantia nigra of the old rats with low levels of VCM and young rats with high VCM levels, but these were significantly less affected than the high VCM rats. These results show that the development of haloperidol-induced oral dyskinesias in old rats is associated with histopathological alterations in the substantia nigra. This suggests that nigral degeneration induced by neuroleptics may contribute to the development of persistent VCM in rats and possibly irreversible tardive dyskinesia in humans.
-
Comparative Study
Region specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress.
Oxidative stress and modulation of anti-oxidant enzymes may contribute to the deleterious consequences of diabetes mellitus and to the effects of chronic (i.e. 21 day) stress in the CNS. We therefore compared the effects of short- and long-term exposure to diabetes-induced hyperglycemia, restraint stress and the combined effects of restraint stress and diabetes upon parameters of oxidative stress in the rat hippocampus. Whereas 7 days of restraint stress or hyperglycemia, or the combination, produced similar increases in oxidative stress markers 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) throughout the hippocampus, 21 days of stress or hyperglycemia did not increase these markers in the dentate gyrus. ⋯ Although long-term stress decreased both SOD isoforms, diabetes increased Cu/Zn-SOD expression in DG with or without 21 days of repeated stress. These increases may account for the finding that protein-conjugated HNE and MDA levels returned to control levels between 7 days and 21 days of hyperglycemia or the combination of diabetes and stress. These results suggest that while other anti-oxidant pathways may account for decreases in oxidative stress in the long-term stress paradigm, increases in Cu/Zn-SOD expression may contribute to the region-specific attenuation of oxidative stress in the diabetic rat hippocampus.
-
Comparative Study
Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity.
In vivo, in vitro and computational studies were used to investigate the impact of the synaptic background activity observed in neocortical neurons in vivo. We simulated background activity in vitro using two stochastic Ornstein-Uhlenbeck processes describing glutamatergic and GABAergic synaptic conductances, which were injected into a cell in real time using the dynamic clamp technique. With parameters chosen to mimic in vivo conditions, layer 5 rat prefrontal cortex cells recorded in vitro were depolarized by about 15 mV, their membrane fluctuated with a S. ⋯ Background activity was highly effective in modulating the firing-rate/current curve of the cell: the variance of the simulated gamma-aminobutyric acid (GABA) and AMPA conductances individually set the input/output gain, the mean excitatory and inhibitory conductances set the working point, and the mean inhibitory conductance controlled the input resistance. An average ratio of inhibitory to excitatory mean conductances close to 4 was optimal in generating membrane potential fluctuations with high coefficients of variation. We conclude that background synaptic activity can dynamically modulate the input/output properties of individual neocortical neurons in vivo.