Neuroscience
-
The neuronal adaptor X11alpha interacts with the conserved -GYENPTY- sequence in the C-terminus of amyloid precursor protein (APP) or its Swedish mutation (APPswe) to inhibit Abeta40 and Abeta42 secretion. We hypothesized that the -YENP- motif essential for APP endocytosis is also essential for X11alpha-mediated effects on APP trafficking and metabolism, and that X11alpha modulates APP metabolism in both secretory and endocytic pathways. X11alpha failed to interact with the endocytic-defective APPswe mutants Y738A, N740A, or P741A, and thus did not modulate their trafficking or metabolism. ⋯ In contrast to endocytic-defective mutants, X11alpha interacted with APPswe Y743A as well as with APPswe. Thus, similar to APPswe, coexpression of X11alpha with APPswe Y743A retarded its maturation, prolonged its half-life, and inhibited APPs, Abeta40, and Abeta42 secretion. Collectively, these data suggest that by direct interaction with the APPswe -YENP- motif in the cytoplasmic tail, X11alpha modulated its trafficking and processing in both secretory and endocytic compartments, and may reduce secretion of Abeta generated in either pathway.
-
Comparative Study
Hyperalgesia and increased neuropathic pain-like response in mice lacking galanin receptor 1 receptors.
The neuropeptide galanin may have a role in modulation of nociception, particularly after peripheral nerve injury. The effect of galanin is mediated by at least three subtypes of receptors. In the present study, we assessed the nociceptive sensitivity in mice lacking the galanin receptor 1 gene (Galr1) and the development of neuropathic pain-like behaviours after photochemically induced partial sciatic nerve ischaemic injury. ⋯ The duration of such pain-like behaviours was significantly increased in Galr1(-/-). The Galr1(-/-) mice and Galr1(+/+) mice did not differ in their recovery from deficits in toe-spread after sciatic nerve crush. The results provide some evidence for an inhibitory function for the neuropeptide galanin acting on galanin receptor 1 (GALR1) in nociception and neuropathic pain after peripheral nerve injury in mice.
-
Comparative Study
Hydrogen peroxide increases the activity of rat sympathetic preganglionic neurons in vivo and in vitro.
Reactive oxygen species (ROS) have been shown to modulate neuronal synaptic transmission and have also been implicated in cardiovascular diseases such as hypertension. The hypothesis that H(2)O(2) acting on sympathetic preganglionic neurons (SPNs) affects spinal sympathetic outflow was tested in the present study. H(2)O(2) was applied intrathecally via an implanted cannula to the T7-T9 segments of urethane-anesthetized rats. ⋯ The pressor effects of intrathecal H(2)O(2) (1000 nmol) were also antagonized dose-dependently by prior intrathecal injection of AP-5 (DL-2-amino-5- phosphonovaleric acid, 10 and 30 nmol), or 6-cyano-7- nitroquinoxaline-2,3-dione, 10 and 30 nmol. In vitro electrophysiological study in spinal cord slices showed that superfusion of 1 mM H(2)O(2) for 3 min, which had no effect on membrane potential, caused an increase in amplitude of excitatory postsynaptic potentials in SPNs, but had little effect on that of inhibitory postsynaptic potentials. Taken together, these results demonstrated that oxidative stress in spinal cord may cause an increase in spinal sympathetic tone by acting on SPNs, which may contribute to ROS-induced cardiovascular dysfunction.
-
Comparative Study
Stimulus-induced patterns of bioelectric activity in human neocortical tissue recorded by a voltage sensitive dye.
Stimulus-induced pattern of bioelectric activity in human neocortical tissue was investigated by use of the voltage sensitive dye RH795 and a fast optical recording system. During control conditions stimulation of layer I evoked activity predominantly in supragranular layers showing a spatial extent of up to 3000 microm along layer III. Stimulation in white matter evoked distinct activity in infragranular layers with a spatial extent of up to 3000 microm measured along layer V. ⋯ The activity pattern of those slices appeared atypical in regard to their deviations of the vertical and horizontal extent of activity, to their reduced spatial extent of activity during increased excitability, to their layer-related distribution of activity, and to the appearance of afterdischarges. Concluding, in 30% of the human temporal lobe slices atypical activity pattern occurred which obviously reflect intrinsic epileptiform properties of the resected tissue. The majority of slices showed stereotyped activity pattern without evidence for increased excitability.
-
Comparative Study
Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles.
The medial temporal lobe, including the entorhinal cortex, the amygdala and the hippocampus, has an important role in learning and memory, and its circuits exhibit synaptic plasticity (long-term potentiation [LTP]). The entorhinal cortex is positioned to exert a potent influence on the amygdala and the hippocampus given its extensive monosynaptic projections to both areas. We therefore studied the effects of activation of the entorhinal cortex with simultaneous recording of LTP in the hippocampus and amygdala in the anesthetized rat. theta Burst stimulation of the lateral entorhinal cortex induced LTP simultaneously in the basal amygdaloid nucleus and in the dentate gyrus. ⋯ In addition we found that the basal amygdala as well as the dentate gyrus sustained late-phase LTP (10 h) which may participate in memory encoding and/or modulation processes. Overall, the results suggest a coordinating role for the entorhinal cortex by simultaneously modulating activity and plasticity in these structures, albeit through different mechanisms. Interactive encoding of this sort is believed to endow memories with a different, more integrative, quality than when either pathway is activated alone.