Neuroscience
-
Comparative Study
Expression of axon guidance molecules and their related genes during development and sexual differentiation of the olfactory bulb in rats.
Axon guidance molecules and related proteins such as semaphorin 3A, neuropilin-1, plexin-1, netrin-1, growth-associated protein, olfactory marker protein, cypin and collapsin response mediator proteins guide the development of neural circuits in the olfactory bulb. In this study, transcriptions of these genes were examined in the olfactory bulb of female, male and neonatal testosterone propionate-treated female rats at the ages of 2, 5, 10, 15, 20, 25, 30 and 45 days. The semaphorin 3A, neuropilin-1, growth-associated protein and collapsin response mediator protein 1-5 genes were expressed significantly higher during the early development stages than in adulthood while the opposite is true for the olfactory marker protein. ⋯ A late effect of the neonatal testosterone propionate treatment on netrin-1, growth-associated protein, olfactory marker protein, collapsin response mediator proteins 1, 3, 4 and cypin gene expression was observed. The expression profiles of collapsin response mediator proteins and their related genes in the developing olfactory bulb confirmed most studies on the relationship between collapsin response mediator proteins and development in the brain. Sex differences of semaphorin 3A, neuropilin-1 as well as collapsin response mediator protein 3 at the early development stage and the late effect of neonatal testosterone propionate treatment on the expressions of netrin-1, growth-associated marker protein, cypin and collapsin response mediator proteins 1, 3 and 5 genes may indicate a possible role of these molecules on sexual differentiation of the olfactory bulb.
-
Comparative Study
Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia.
The role of endocannabinoid signaling in the response of the brain to injury is tantalizing but not clear. In this study, transient middle cerebral artery occlusion (MCAo) was used to produce ischemia/reperfusion injury. Brain content of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol were determined during MCAo. ⋯ Rats administered a single dose (3 mg/kg) of the cannabinoid receptor type 1 (CB1) receptor antagonist SR141716 prior to MCAo exhibited a 50% reduction in infarct volume and a 40% improvement in neurological function compared with vehicle control. A second CB1 receptor antagonist, LY320135 (6 mg/kg), also significantly improved neurological function. The CB1 receptor agonist, WIN 55212-2 (0.1-1 mg/kg) did not affect either infarct volume or neurological score.
-
Comparative Study
Increased expression of Ca2+/calmodulin-dependent protein kinase II alpha during chronic morphine exposure.
The chronic administration of morphine and related opioid drugs results in tolerance and dependence which limits the clinical utility of these agents. Neuronal plasticity is probably responsible in large part for tolerance and dependence. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a crucial role in the neuroplastic events underlying memory formation and other phenomena. ⋯ In addition, the abundance of phosphorylated CaMKIIalpha was increased in spinal cord tissue from morphine-treated mice. We conclude that enhanced CaMKIIalpha expression and activity in spinal cord tissue may contribute to the development of morphine tolerance in mice. The involvement of this enzyme in opioid tolerance suggests other parallels may exist between the neuroplastic events related to memory formation and those related to opioid tolerance or pain.
-
The novelty of a cue may arise from the presence of an element that has not previously been experienced or from familiar elements that have been rearranged. The present study mapped the anatomical basis of responding to this second form of novelty. For this, rats were trained on a working memory spatial task in a radial-arm maze in a cue-controlled environment. ⋯ In contrast, no changes were observed in other sites including the perirhinal cortex, postrhinal cortex, lateral and medial entorhinal cortices, retrosplenial cortices, or anterior thalamic nuclei. These results highlight the selective involvement of the hippocampus for processing novel rearrangements of visual stimuli and suggest that this involvement is intrinsic as it is independent of the parahippocampal cortices. This pattern of Fos changes is the mirror image of that repeatedly found for novel individual stimuli (perirhinal increase, no hippocampal change), demonstrating that these two forms of novelty have qualitatively different neural attributes.
-
Exercise is increasingly recognized as an intervention that can reduce CNS dysfunctions such as cognitive decline, depression and stress. Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) is increased in the hippocampus following exercise. In this study we tested the hypothesis that exercise can counteract a reduction in hippocampal BDNF protein caused by acute immobilization stress. ⋯ This study demonstrates that CORT modulates stress-related alterations in BDNF protein. Further, exercise can override the negative effects of stress and high levels of CORT on BDNF protein. Voluntary physical activity may, therefore, represent a simple non-pharmacological tool for the maintenance of neurotrophin levels in the brain.