Neuroscience
-
In Parkinson's disease the neurones of the subthalamic nucleus show increased synchrony and oscillatory burst discharge, thought to reflect a breakdown of parallel processing in basal ganglia circuitry. To understand better the mechanisms underlying this transition, we sought to mimic this change in firing pattern within sagittal slices of rat midbrain. The firing patterns of up to four simultaneously extracellularly recorded subthalamic nucleus (STN) neurones were analysed using burst and oscillation detection programs, and correlated activity between pairs of neurones assessed. ⋯ As the bursting seen here was unaccompanied by the synchronous activity that has often been observed (pathologically) in vivo, it probably reflects solely intrinsic STN neuronal properties, rather than network activity. No functional role was found for glutamatergic collaterals within the STN, either when cells are firing tonically or burst firing. The circuitry needed to produce synchrony in the STN is most likely not intrinsic to the STN itself, but requires connections with other basal ganglia nuclei, and/or the cortex, which are not present in this preparation.
-
Comparative Study
Modulation of AMPA receptor kinetics differentially influences synaptic plasticity in the hippocampus.
Prior studies showed that positive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor modulators facilitate long-term potentiation (LTP) and improve the formation of several types of memory in animals and humans. However, these modulators are highly diverse in their effects on receptor kinetics and synaptic transmission and thus may differ also in their efficacy to promote changes in synaptic strength. The present study examined three of these modulators for their effects on synaptic plasticity in field CA1 of hippocampal slices, two of them being the benzamide drugs 1-(quinoxalin-6-ylcarbonyl)piperidine (CX516) and 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546) which prominently enhance synaptic transmission yet differ in their relative impact on amplitude versus duration of the synaptic response. ⋯ Tests with recombinant NMDA receptors (NR1/NR2A) showed that CX516 and CX546 have no direct effects on currents mediated by these receptors. These results suggest that (1) modulation of AMPA receptors which increases either response amplitude or duration can facilitate LTP formation, (2) modulators that effectively slow response deactivation augment the maximum magnitude of LTP and LTD, and (3) receptor desensitization may have a minor impact on synaptic plasticity in the hippocampus. Taken together, our data indicate that AMPA receptor modulators differ substantially in their ability to enhance synaptic potentiation or depression, depending on their particular influence on receptor kinetics, and hence that they may also be differentially effective in influencing higher-order processes such as memory encoding.
-
Comparative Study
Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures.
In the brain, the efflux transporter P-glycoprotein (Pgp) is predominantly located on the luminal membrane of endothelial cells lining brain microvessels and forming the blood-brain barrier. Many lipophilic drugs, including antiepileptic drugs, are potential substrates for Pgp. Overexpression of Pgp in endothelial cells of the blood-brain barrier has been determined in patients with drug resistant forms of epilepsy such as temporal lobe epilepsy and rodent models of temporal lobe epilepsy and suggested to lead to reduced penetration of antiepileptic drugs into the brain. ⋯ No neuronal Pgp staining was seen in control rats. The expression of Pgp in neurons after limbic seizures was substantiated by determining Pgp encoding genes (mdr1a, mdr1b) in neurons by real time quantitative RT-PCR. Increased Pgp expression in hippocampal neurons is likely to affect the action of drugs with intraneuronal targets and, in view of recent evidence from other cell types, could be associated with prevention of apoptosis which is involved in neuronal damage developing after seizures such as produced by pilocarpine.
-
Repeated exposure to stress induces cross-sensitization to psychostimulants. The present study assessed functional neural activation during social defeat stress-induced sensitization to a subsequent amphetamine challenge. Social defeat stress was induced in intruder rats during short confrontations with an aggressive resident rat once every third day during the course of 10 days. ⋯ Amphetamine augmented stress-induced Fos-LI labeling 17 days after the first stress episode in the dorsal striatum, NAc core, and medial amygdala, reflecting a cross-sensitization of Fos response. Amphetamine challenge 70 days after social stress exposures revealed sensitized Fos-LI labeling in the VTA and the amygdala. These data suggest that episodes of repeated social stress induce a long-lasting neural change that leads to an augmented functional activation in the VTA and amygdala, which might represent a neurobiological substrate for long-lasting cross-sensitization of repeated social defeat stress with psychostimulant drugs.
-
Following nerve injury in neonatal rats, a large proportion of motoneurons die, possibly as a consequence of an increase in vulnerability to the excitotoxic effects of glutamate. Calcium-dependent glutamate excitotoxicity is thought to play a significant role not only in injury-induced motoneuron death, but also in motoneuron degeneration in diseases such as amyotrophic lateral sclerosis (ALS). Motoneurons are particularly vulnerable to calcium influx following glutamate receptor activation, as they lack a number of calcium binding proteins, such as calbindin-D(28k) and parvalbumin. ⋯ M.; n=4) in parvalbumin over-expressing mice. Surprisingly, this dramatic increase in motoneuron survival was not reflected in a significant improvement in muscle function, since 8 weeks after injury there was no improvement in either maximal twitch and tetanic force, or muscle weights. Thus, inducing spinal motoneurons to express parvalbumin protects a large proportion of motoneurons from injury-induced cell death, but this is not sufficient to restore muscle function.