Neuroscience
-
Comparative Study
Role of 5-HT1B receptors in entrainment disorder of Otsuka Long Evans Tokushima fatty (OLETF) rats.
The role of 5-HT1A and 5-HT1B receptors in entrainment function was studied in Otsuka Long Evans Tokushima fatty (OLETF) rats and control Long Evans Tokushima Otsuka (LETO) rats. Light-induced (100 lux, 30 min) Fos expression in the suprachiasmatic nucleus was studied. Light-induced Fos expression was significantly decreased in OLETF rats compared to that in LETO rats. ⋯ Light-induced phase shifts of locomotor activity in OLETF rats were significantly smaller than those in LETO rats. The phase shifts were significantly increased by isamoltan (3 mg/kg, i.p.) in OLETF rats. These results suggest that 5-HT1B receptors are involved in the reduced entrainment function of OLETF rats.
-
In the lamprey, spinal locomotor activity can be initiated by pharmacological microstimulation in several brain areas: rostrolateral rhombencephalon (RLR); dorsolateral mesencephalon (DLM); ventromedial diencephalon (VMD); and reticular nuclei. During DLM- or VMD-initiated locomotor activity in in vitro brain/spinal cord preparations, application of a solution that focally depressed neuronal activity in reticular nuclei often attenuated or abolished the locomotor rhythm. Electrical microstimulation in the DLM or VMD elicited synaptic responses in reticulospinal (RS) neurons, and close temporal stimulation in both areas evoked responses that summated and could elicit action potentials when neither input alone was sufficient. ⋯ These new results suggest that neurons in the RLR project rostrally to locomotor areas in the DLM and VMD. These latter areas then appear to project caudally to RS neurons, which probably integrate the synaptic inputs from both areas and activate the spinal locomotor networks. These pathways are likely to be important components of the brain neural networks for the initiation of locomotion and have parallels to locomotor command systems in higher vertebrates.
-
Comparative Study
Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain.
The gene encoding methyl-CpG binding protein 2 (MeCP2) is mutated in the large majority of girls that have Rett Syndrome (RTT), an X-linked neurodevelopmental disorder. To better understand the developmental role of MeCP2, we studied the ontogeny of MeCP2 expression in rat brain using MeCP2 immunostaining and Western blots. MeCP2 positive neurons were present throughout the brain at all ages examined, although expression varied by region and age. ⋯ The timing of MeCP2 expression in the granule cell layer is coincident with the onset of granule cell synapse formation. Although more subtle, the degree of MeCP2 expression in cortex and hippocampus was most closely correlated with synaptogenesis in both regions. Our finding that MeCP2 expression is correlated with synaptogenesis is consistent with the hypothesis that Rett Syndrome is caused by defects in the formation or maintenance of synapses.
-
Stress and stress-related hormones induce structural changes in neurons of the adult CNS. Neurons in the hippocampus, the amygdala and the prefrontal cortex undergo neurite remodeling after chronic stress. In the hippocampus some of these effects can be mimicked with chronic administration of adrenal steroids. ⋯ While chronic stress increases the number of PSA-NCAM- and DCX-immunoreactive cells in the piriform cortex layer II, chronic corticosterone administration decreases these numbers. These findings indicate that stress and adrenal steroids affect the piriform cortex and suggest that in this region, as in the hippocampus, they may induce structural changes. This is a potential mechanism by which stress and corticosterone modulate functions of this limbic region, such as its participation in olfactory memory.
-
The present study was to determine how afferents from the substantia nigra pars reticulata (SNr) of the basal ganglia to the pedunculopontine tegmental nucleus (PPN) in the brainstem could contribute to the control of behavioral states. We used anesthetized and acutely decerebrated cats (n=22). Repetitive electrical stimulation (10-100 Hz, 20-50 microA, for 4-20 s) to the ventrolateral part of the PPN produced rapid eye movement (REM) associated with a suppression of postural muscle tone (REM with atonia). ⋯ On the other hand, an injection of muscimol into the dorsolateral part of the SNr (1-15 mM, 0.1-0.25 microl) induced REM with atonia, which was in turn eliminated by a further injection of muscimol into the PPN (5-10 mM, 0.2-0.25 microl). These results suggest that a GABAergic projection from the SNr to the PPN could be involved in the control of REM with atonia, signs which indicate REM sleep. An excessive GABAergic output from the basal ganglia to the PPN in parkinsonian patients may induce sleep disturbances, including a reduction of REM sleep periods and REM sleep behavioral disorders (REM without atonia).