Neuroscience
-
Comparative Study
Activation of extracellular signal-regulated protein kinase in the dorsal root ganglion following inflammation near the nerve cell body.
Inflammation of the primary afferent proximal to the dorsal root ganglion (DRG) and the DRG itself is known to produce radicular pain. Here, we examined pain-related behaviors and the activation of extracellular signal-regulated protein kinase (ERK) in the DRG after inflammation near the DRG somata. Inflammation of the L4/5 nerve roots and DRG induced by complete Freund's adjuvant (CFA) produced mechanical allodynia on the ipsilateral hindpaw and induced an increase in the phosphorylation of ERK, mainly in tyrosine kinase (trk) A-expressing small- and medium-size neurons. ⋯ Furthermore, we found that nerve growth factor (NGF) injection directly into the L4/5 nerve roots and DRG produced mechanical allodynia, and an increase in the phosphorylation of ERK and BDNF expression in the DRG, but the mitogen-activated protein kinase (MAPK) kinase1/2 inhibitor, U0126, inhibited the effects induced by NGF. Therefore, we suggest that after inflammation near the cell body, NGF synthesized within the nerve root and DRG induces BDNF expression through trkA receptors and intracellular ERK-MAPK. The activation of MAPK in the primary afferents may be involved in the pathophysiological mechanisms of inflammation-induced radiculopathy and MAPK pathways in the primary afferents may be potential targets for pharmacological intervention for neuropathic pain produced by inflammation near the DRG somata.
-
Brain edema leading to an expansion of brain volume has a crucial impact on morbidity and mortality following traumatic brain injury (TBI) as it increases intracranial pressure, impairs cerebral perfusion and oxygenation, and contributes to additional ischemic injuries. Classically, two major types of traumatic brain edema exist: "vasogenic" due to blood-brain barrier (BBB) disruption resulting in extracellular water accumulation and "cytotoxic/cellular" due to sustained intracellular water collection. A third type, "osmotic" brain edema is caused by osmotic imbalances between blood and tissue. ⋯ For many years, vasogenic brain edema was accepted as the prevalent edema type following TBI. The development of mechanical TBI models ("weight drop," "fluid percussion injury," and "controlled cortical impact injury") and the use of magnetic resonance imaging, however, revealed that "cytotoxic" edema is of decisive pathophysiological importance following TBI as it develops early and persists while BBB integrity is gradually restored. These findings suggest that cytotoxic and vasogenic brain edema are two entities which can be targeted simultaneously or according to their temporal prevalence.
-
The enteric nervous system plays an integral role in the gastrointestinal tract. Within this intricate network, enteric glia are crucial in the maintenance of normal bowel function, yet their signaling mechanisms are poorly understood. Enteric glia, and not enteric neurons, selectively responded to lysophosphatidic acid (LPA), a product of phosphatidylcholine metabolism, with dose-dependent calcium (Ca(2+)) signaling over a range from 100 pM to 10 microM. ⋯ Inhibition of the inositol 1,4,5-trisphosphate (IP(3)) receptor with 200 microM 2-aminoethoxydiphenylborate (2APB) abolished LPA signals. RT-PCR analysis demonstrated the presence of two LPA-coupled endothelial differentiation gene (EDG) receptor mRNAs (EDG-2 and EDG-7) in myenteric plexus primary cultures. EDG-2 expression in glial cells of the ENS was confirmed immunocytochemically.
-
Aquaporin-4 (AQP4) is the major water channel in the CNS. Its expression at fluid-tissue barriers (blood-brain and brain-cerebrospinal fluid barriers) throughout the brain and spinal cord suggests a role in water transport under normal and pathological conditions. Phenotype studies of transgenic mice lacking AQP4 have provided evidence for a role of AQP4 in cerebral water balance and neural signal transduction. ⋯ In contrast, brain swelling and clinical outcome are worse in AQP4-null mice in models of vasogenic (fluid leak) edema caused by freeze-injury and brain tumor, probably due to impaired AQP4-dependent brain water clearance. AQP4-null mice also have markedly reduced acoustic brainstem response potentials and significantly increased seizure threshold in response to chemical convulsants, implicating AQP4 in modulation of neural signal transduction. Pharmacological modulation of AQP4 function may thus provide a novel therapeutic strategy for the treatment of stroke, tumor-associated edema, epilepsy, traumatic brain injury, and other disorders of the CNS associated with altered brain water balance.
-
Potassium-chloride cotransporters (KCCs) collectively play a crucial role in the function and development of both the peripheral and central nervous systems. KCC4 is perhaps the least abundant KCC in the adult mammalian brain, where its localization is unknown. In the embryonic brain, KCC4 mRNA is found in the periventricular zone, cranial nerves and choroid plexus [Eur J Neurosci 16 (2002) 2358]. ⋯ Co-staining of KCC4 with anti-MAP2, GFAP and CNPase revealed that KCC4 is expressed in peripheral neurons. Thus, KCC4 is expressed on the apical membrane of the choroid plexus, where it likely participates to K(+) reabsorption. KCC4 is also expressed in peripheral neurons, where its function remains to be determined.