Neuroscience
-
Comparative Study
Early increase of apoptosis-linked gene-2 interacting protein X in areas of kainate-induced neurodegeneration.
Apoptosis-linked gene-2 interacting protein X (Alix) is thought to be involved in both cell death and vesicular trafficking. We examined Alix expression 2 h, 6 h and 24 h after triggering seizure-dependent neuronal death by i.p. kainic acid injection. In the hippocampus, intense, transient immunolabelling was observed in the strata lucidum, oriens and radiatum, areas of high synaptic activity. ⋯ The increase persisted 24 h after kainate-injection in CA3 and the piriform cortex which are areas with massive swelling and numerous pyknotic neurons. This suggests that Alix may play an early role in the mechanisms leading to cell death. Taken together, our results suggest that Alix may be a molecular link between synaptic functioning and neuronal death.
-
Comparative Study
A possible role of tryptase in angiogenesis in the brain of mdx mouse, a model of Duchenne muscular dystrophy.
Duchenne muscular dystrophy (DMD) is characterized by muscle degeneration and affects the CNS. Dystrophin is absent in muscle and CNS of both DMD patients and mdx mouse, a model of DMD. ⋯ Tryptase, contained in the MC granules, stimulates angiogenesis in vitro and in vivo. We demonstrated for the first time a correlation between the extent of angiogenesis and the number of tryptase-positive neurons and microvessels and suggest that the tryptase contained in the neurons and in the endothelial cells of the mdx mouse brain may be involved in the regulation of angiogenesis taking place in mdx mouse.
-
Comparative Study
Differential co-localisation of the P2X7 receptor subunit with vesicular glutamate transporters VGLUT1 and VGLUT2 in rat CNS.
Presynaptic P2X(7) receptors are thought to play a role in the modulation of transmitter release and have been localised to terminals with the location and morphology typical of excitatory boutons. To test the hypothesis that this receptor is preferentially associated with excitatory terminals we combined immunohistochemistry for the P2X(7) receptor subunit (P2X(7)R) with that for two vesicular glutamate transporters (VGLUT1 and VGLUT2) in the rat CNS. This confirmed that P2X(7)R immunoreactivity (IR) is present in glutamatergic terminals; however, whether it was co-localised with VGLUT1-IR or VGLUT2-IR depended on the CNS region examined. ⋯ In other forebrain areas, P2X(7)R-IR co-localised with VGLUT1-IR throughout the amygdala, caudate putamen, striatum, reticular thalamic nucleus and cortex and with VGLUT2-IR in the dorsal lateral geniculate nucleus, amygdala and hypothalamus. Dual labelling studies performed using markers for cholinergic, monoaminergic, GABAergic and glycinergic terminals indicated that in certain brainstem and spinal cord nuclei the P2X(7)R is also expressed by subpopulations of cholinergic and GABAergic/glycinergic terminals. These data support our previous hypothesis that the P2X(7)R may play a role in modulating glutamate release in functionally different systems throughout the CNS but further suggest a role in modulating release of inhibitory transmitters in some regions.
-
In seven freely moving squirrel monkeys (Saimiri sciureus), the neuronal activity in the periaqueductal gray (PAG) and bordering structures was registered during vocal communication, using a telemetric single-unit recording technique. In 9.3% of the PAG neurons, a vocalization-correlated activity was found. Four reaction types could be distinguished: a) neurons, showing an activity burst immediately before vocalization onset; b) neurons, firing during vocalization, and starting shortly before vocalization onset; c) neurons, firing exclusively during vocalization; d) neurons, firing in the interval between perceived vocalizations (i.e. vocalizations produced by group mates) and self-produced vocal response. ⋯ None of the neurons reflected simple acoustic parameters, such as fundamental frequency or amplitude, in its discharge rate. None of the neurons reacted to vocalizations of other animals not responded to by the experimental animal. All four reaction types found in the PAG were also found in the reticular formation bordering the PAG, though in lower density.
-
Transient receptor potential-vanilloid type-1 (TRPV1) is a ligand-gated cation channel with preference for divalent cations, especially Ca(2+) (sequence of conductances: Ca(2+)>Mg(2+)>Na(+) approximately/= K(+) approximately/= Cs(+)). In the present study, the two-electrode voltage-clamp technique was used on oocytes of Xenopus laevis expressing TRPV1 to evaluate whether human TRPV1 also conducts protons. In medium devoid of K(+), Na(+), Mg(2+), and Ca(2+), capsaicin 1 microM induced a significant inward current (62% of the current in physiological medium). ⋯ The same current was also demonstrated in Chinese hamster ovary cells expressing human TRPV1. We conclude that TRPV1 conducts protons, in addition to Na(+), K(+), Mg(2+), and Ca(2+). The proton conductance may help to initiate action potentials and to translocate H(+) dependent on TRPV1 activation and membrane potential.