Neuroscience
-
Comparative Study
Region specific changes in forebrain 5-hydroxytryptamine1A and 5-hydroxytryptamine2A receptors in isolation-reared rats: an in vitro autoradiography study.
The neurochemical correlates of the behavioural consequences of isolation rearing of rats are complex and involve many neurotransmitters, including the serotonergic system. Impaired functioning of the ascending serotonergic system has been implicated in many neuropsychiatric syndromes, including attention deficit hyperactivity disorder and schizophrenia. In the present investigation serotonergic function was assessed using in vitro receptor autoradiography. ⋯ By contrast, 5-HT(1A) receptor binding site densities were significantly reduced by 22% in the prelimbic cortex, and significantly increased by between 10 and 50% in the motor cortex, somatosensory cortex, dentate gyrus and CA fields of the hippocampus. These data demonstrate that isolation-rearing produces significant effects on forebrain 5-HT(1A) and 5-HT(2A) receptor densities in the adult rat. It is hypothesised that altered serotonergic function, particularly in the hippocampus and prefrontal cortex, may underlie some of the behavioural abnormalities associated with isolation-rearing.
-
To help discern sites of focal activation during seizures of different phenotype, the numbers of Fos immunoreactive (FI) neurons in specific brain regions were analyzed following "brainstem-evoked," "forebrain-evoked" and forebrain/brainstem combination seizures induced by a variety of methods. First, pentylenetetrazol (PTZ, 50 mg/kg) induced forebrain-type seizures in some rats, or forebrain seizures that progressed to tonic/clonic brainstem-type seizures in other rats. Second, minimal electroshock induced forebrain seizures whereas maximal electroshock (MES) induced tonic brainstem-type seizures in rats. ⋯ These findings suggest these latter areas may be transitional areas between forebrain and brainstem seizure interactions. Collectively, these data illustrate a generally consistent pattern of forebrain Fos staining associated with forebrain-type seizures and a consistent pattern of brainstem Fos staining associated with brainstem-type seizures. Additionally, these data are consistent with a notion that separate seizure circuitries in the forebrain and brainstem mutually interact to facilitate one another, possibly through involvement of specific "transition mediating" nuclei.
-
Comparative Study
Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation.
Brain-derived neurotrophic factor (BDNF) and its cognate receptor tyrosine kinase B (TrkB) play important roles in regulating survival, structure, and function of CNS neurons. One method of studying the functions of these molecules has utilized in vitro hippocampal slice preparations. An important caveat to using slices, however, is that slice preparation itself might alter the expression of BDNF, thereby confounding experimental results. ⋯ In contrast to these findings, slices prepared as for acute slice physiology exhibited no change in BDNF content in the molecular layer and mossy fiber pathway 30 min after slicing, but exhibited significant increases in the dentate granule and CA3 pyramidal cell layers. These findings demonstrate that BDNF protein content is altered following slice preparation, that different methods of slice preparation produce different patterns of BDNF regulation, and raise the possibility that BDNF release and TrkB activation may also be regulated. These consequences of hippocampal slice preparation may confound analyses of exogenous or endogenous BDNF on hippocampal neuronal structure or function.
-
This study investigated the relationship between the orexins and patterns of activity in the diurnal Nile grass rat, Arvicanthis niloticus. Some individuals of this species switch to a more nocturnal pattern when given access to a running wheel, while others continue to be most active during the day. In both day- and night-active grass rats, the percentages of orexin A (OXA) and orexin B (OXB) cells expressing Fos were highest when animals were actively running in wheels. ⋯ This study demonstrates that individual differences in the patterns of activation of OXA and OXB cell populations are related to differences in the temporal pattern of wheel running. We also present evidence that orexin cells have projections to the intergeniculate leaflet that appear to make contact with neuropeptide-Y cells. We discuss the possibility that these fibers may be involved in relaying feedback regarding the activity state of the animal to the circadian system through these projections.
-
Comparative Study
The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain.
The cortical stab injury has been widely used for biochemical analysis of molecular changes following CNS injury. However, the cellular responses to this injury have not been accurately quantified. In order to provide a baseline for biochemical studies and future experiments on the manipulation of the CNS injury response we have undertaken a quantitative analysis of this injury. ⋯ They are likely to be blood-derived cells that express NG2 or have ingested it. NG2 immunohistochemistry and platelet-derived growth factor alpha receptor (PDGFalpha-R) in situ hybridisation on neighbouring sections was performed. In the lesioned area only 12% of NG2 positive (+ive) cells were PDGFalpha-R +ive (a ratio of 1:8 for PDGFalpha-R +ive cells: NG2 +ive cells) compared with 33% in the unlesioned cortex and an almost 100% overlap in the spinal cord.