Neuroscience
-
The emerging profile for the effects of prenatal cocaine exposure presents two prominent features in the exposed offspring: cognitive/attention deficits and an age-associated trend toward motor/tone abnormalities up to 2 years of age. One candidate mechanism underlying these clinical features is long-lasting alterations to dopamine (DA) neuron function. However, the impact of prenatal cocaine exposure on DA release in dopaminergic terminal fields in vivo in mature offspring is poorly understood. ⋯ We also measured total dopamine transporter (DAT) and tyrosine hydroxylase protein levels in these offspring by blot immunolabeling and found a small, but significant, decrease in DAT protein in striatum from offspring exposed at GD 8-21 and GD 15-21. Collectively, these data demonstrate that prenatal cocaine exposure during dopamine neuron neurogenesis has long-lasting effects on DA neuron function lasting into early adulthood which may be related in part to steady state DAT protein levels. These molecular events may be associated with established cognitive deficits and perhaps the trends seen in altered motor behavior.
-
Hepatocyte growth factor as an enhancer of nmda currents and synaptic plasticity in the hippocampus.
Hepatocyte growth factor (HGF) promotes the survival and migration of immature neurons, but its role in the mature brain has remained elusive. In the hippocampus of juvenile rats, we found that the HGF receptor c-Met was expressed in neurons. Furthermore, it was highly Tyr-phosphorylated, more so than in the liver under normal conditions, suggesting that the receptor is activated and that HGF may act continuously in the intact brain. ⋯ We further found that HGF augmented N-methyl-D-aspartate receptor-mediated currents in both slices and dissociated neurons. This augmentation is likely to underlie the enhancement of LTP. Considering that the expression of both HGF and c-Met are known to be induced by ischemic stimuli, this modulation would provide a novel understanding of a neuronal regulatory systems shared with pathogenic ischemic states.
-
It has been shown that the noradrenergic (NE) locus coeruleus (LC)-hippocampal pathway plays an important role in learning and memory processing, and that the development of this transmitter pathway is influenced by neurotrophic factors. Although some of these factors have been discovered, the regulatory mechanisms for this developmental event have not been fully elucidated. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor influencing LC-NE neurons. ⋯ NE fiber innervation into the hippocampal co-transplant from an adjacent brainstem graft was also influenced by the presence of GDNF, with a significantly more robust innervation observed in transplants from wildtype fetuses. The most successful LC/hippocampal co-grafts were generated from fetuses expressing the wildtype GDNF background, whereas the most severely affected transplants were derived from double transplants from null-mutated fetuses. Our data suggest that development of the NE LC-hippocampal pathway is dependent on the presence of GDNF, most likely through a target-derived neurotrophic function.
-
Bidirectional modifications in synaptic efficacy are central components in recent models of cortical learning and memory, and we previously demonstrated both long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD) in the neocortex of the unanaesthetized adult rat. Here, we have examined the effects of N-methyl-D-aspartate receptor (NMDAR) blockade on the induction of LTD, LTP, and depotentiation of field potentials evoked in sensorimotor cortex by stimulation of the white matter in the adult, freely moving rat. High frequency (300 Hz) stimulation (HFS) was used to induce LTP and prolonged, low-frequency (1 Hz) stimulation was used to induce either depotentiation or LTD. ⋯ Under NMDAR blockade, HFS failed to induce LTP and instead produced a depression effect similar to LTD. Following washout of the drug, HFS induced a normal LTP effect. Unlike LTP, LTD and depotentiation were found to be NMDAR-independent in the neocortex of the freely moving rat.
-
Comparative Study
Corticotropin-releasing factor receptor type 1 and 2 mRNA expression in the rat anterior pituitary is modulated by intermittent hypoxia, cold and restraint.
We had previously demonstrated that continual-hypoxia stimulated corticotropin-releasing factor (CRF)mRNA in hypothalamus, and release of CRF, as well as enhancing plasma adrenocorticotropic-hormone and corticosterone of rats. The present study demonstrates using in situ autoradiography that CRF receptor 1 (CRFR1) and CRF receptor 2 (CRFR2) mRNA in the rat anterior pituitary is changed by intermittent hypoxia, cold, restraint, alone and in combination. Rats were exposed to intermittent hypoxia for 4 h/day during various periods in a hypobaric chamber. ⋯ These results show that the acute response to intermittent hypoxia is a decrease in the CRF receptor mRNA whereas longer exposure to the three environmental stressors hypoxia, cold and restraint is needed to provoke an increase. This may have important consequences for adaptation to high altitude. The significant differences between the expression of CRFR1 mRNA and CRFR2 mRNA in response to the different stimuli might suggest that the two receptors in the pituitary play different roles in behavior.