Neuroscience
-
Comparative Study
Evidence that peripheral rather than intracranial thermal signals induce thermoregulation.
Numerous effector mechanisms have been discovered, which change body temperature and thus serve to maintain the thermal integrity of homeothermic animals. These mechanisms are driven by thermal signals that are processed by neurons in the hypothalamic preoptic area. To keep a tight control over body temperature, these neurons have to receive accurate thermal information. ⋯ Since the brain temperature did not decrease, it is unlikely that intracranial thermoreceptors are involved in the transmission of "cold" thermal signal to induce thermoregulation. At 30 min of cold exposure, neurons in all known thermoregulatory areas (like the ventrolateral part of the medial preoptic nucleus, the lateral retrochiasmatic area, the lateral parabrachial nucleus and the peritrigeminal nucleus) were already maximally activated. These observations clearly indicate that the activation of neurons in the preoptic and several other thermoregulatory nuclei is induced in vivo by thermal signals originating in the periphery, and not in the CNS.
-
The subcellular distributions and co-associations of the gap junction-forming proteins connexin 47 and connexin 32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin 47 was co-localized with astrocytic connexin 43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin 32 without connexin 47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin 47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. ⋯ These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin 47-containing and connexin 32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and heterologous oligodendrocyte gap junctions provide essential pathways for intra- and intercellular ionic homeostasis.
-
Comparative Study
Acute fluoxetine administration differentially affects brain C-Fos expression in fasted and refed rats.
In the present study we investigated the effect of acute fluoxetine administration on the expression of c-Fos in the rat brain under two different metabolic conditions: fed and fasting states. Wistar male rats, weighing 220+/-30g, received i.p. injections of saline solution or fluoxetine (10mg/kg), and were killed 2 h later. The brains were removed after transcardiac perfusion with phosphate-buffered saline followed by paraformaldehyde, and were then processed for immunohistochemistry. ⋯ Both in fasting and fed states, fluoxetine-treated animals presented a significant increase in c-Fos expression in hypothalamic areas, limbic structures, circumventricular areas, and in mesencephalic and rhomboencephalic regions, as compared with saline-treated controls. The quantitative comparison of data obtained from fasted and fed animals showed that fasted rats treated with fluoxetine presented a higher c-Fos expression in the ventromedial hypothalamus and the paraventricular nuclei compared with the fed group, while in fluoxetine-treated fed rats c-Fos expression was higher in the arcuate nuclei, medial amygdala, locus coeruleus and dorsal raphe nuclei, as compared with fasted, fluoxetine-treated animals. These data indicate that the metabolic condition of the animals significantly modifies fluoxetine-induced brain c-Fos expression, suggesting that visceral and behavioral fluoxetine effects may be influenced by the metabolic state of the individual.
-
Cholinergic neurons degenerate in Alzheimer's disease and dementia and neuroprotective substances are of high interest to counteract this cell death. The aim of the present study was to test the effect of urea and the nitric oxide synthetase inhibitor l-thiocitrulline on the survival of cholinergic neurons. Organotypic brain slices of the basal nucleus of Meynert were cultured for 2 weeks in the presence of 1-100 microM urea with or without NGF or other growth factors or with or without 1-10 microM of the NOS inhibitor L-thiocitrulline. ⋯ NGF as well as urea did not stimulate expression of the enzyme choline acetyltransferase pointing to survival promoting effects. Urea did not modulate the NGF binding in PC12 cells indicating that this effect was indirect. It is concluded that urea may play a role as an indirect survival promoting molecule possibly involving the nitric oxide pathway.
-
Comparative Study
Time-course expression of CNS inflammatory, neurodegenerative tissue repair markers and metallothioneins during experimental autoimmune encephalomyelitis.
Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS). EAE and MS are characterized by CNS inflammation, demyelination and neurodegeneration. The inflammatory response occurring within the CNS leads to glial activation, dysfunction and death, as well as axonal damage and neurological deficit. ⋯ Interestingly, we found two marker expression profiles. In the first, marker expression increased as clinical signs worsened and reverted to baseline expression during recovery; in the second, marker expression increased at a later point during relapse, peaked at highest clinical score, and remained elevated throughout recovery. Of note, metallothionein expression was found to be related to the second profile, which would suggest that metallothionein proteins are implicated in the clinical recovery of EAE and perhaps these antioxidant proteins may provide therapeutic benefits in MS.