Neuroscience
-
The command and control of limb movements by the cerebellar and reflex pathways are modeled by means of a circuit whose structure is deduced from functional constraints. One constraint is that fast limb movements must be accurate although they cannot be continuously controlled in closed loop by use of sensory signals. Thus, the pathways which process the motor orders must contain approximate inverse functions of the bio-mechanical functions of the limb and of the muscles. ⋯ Reflexes comparable to the myotatic and tendinous reflexes, and stabilizing reactions comparable to the cerebellar sensory-motor reactions, reduce efficiently the effects of perturbing torques. These results allow to link the behavioral concepts of the equilibrium-point "lambda model" [J Motor Behav 18 (1986) 17] with anatomical and physiological features: gains of reflexes and sensori-motor reactions set the slope of the "invariant characteristic," and efferent copies set the "threshold of the stretch reflex." Thus, mathematical and physical laws account for the raison d'etre of the inhibitory nature of Purkinje cells and for the conspicuous anatomical pattern of the cerebellar pathways. These properties of these pathways allow to perform approximate inverse calculations after learning of direct functions, and insure also the coordination of voluntary and reflex motor orders.
-
Relatively little attention has been focused on mechanisms related to neural plasticity and drug abuse in adolescence, compared with abundant research using adult animal models. As smoking is typically initiated in adolescence, an important question to address is whether the adolescent brain responds differently to nicotine compared with the adult. To investigate this question, we examined the expression of a number of early response genes (arc, c-fos and NGFI-B) that have been implicated in synaptic plasticity and addiction, following acute nicotine in adolescent and adult rats. ⋯ These results suggest that in adolescence, the activity of specific early response genes is higher in brain regions critical for emotional regulation and decision-making. Further, nicotine affects key plasticity molecules in these areas in a manner different from the adult. Thus, adolescence may represent a neurobiologically vulnerable period with regard to nicotine exposure.
-
Our group and others have demonstrated that 17beta-estradiol (E2) induces neurotrophic and neuroprotective responses in hippocampal and cortical neurons which are dependent upon the Src/extracellular signal-regulated kinase (ERK) signaling pathways. The purpose of this study was to determine the upstream mechanism(s) that initiates the signaling cascade leading to E2-inducible neuroprotection. We tested the hypothesis that E2 activates rapid Ca(2+) influx in hippocampal neurons, which would lead to activation of the Src/ERK signaling cascade and up-regulation of Bcl-2 protein expression. ⋯ We further demonstrated the presence of specific membrane E2 binding sites in hippocampal neurons. Together, these data indicate that E2-induced Ca(2+) influx via the L-type Ca(2+) channel is required for E2 activation of the Src/ERK/CREB/Bcl-2 signaling. Implications of these data for understanding estrogen action in brain and use of estrogen therapy for prevention of neurodegenerative disease are discussed.
-
Comparative Study
Synaptic and subcellular localization of A-kinase anchoring protein 150 in rat hippocampal CA1 pyramidal cells: Co-localization with excitatory synaptic markers.
Excitatory and inhibitory ionotropic receptors are regulated by protein kinases and phosphatases, which are localized to specific subcellular locations by one of several anchoring proteins. One of these is the A-kinase anchoring protein (AKAP150), which confers spatial specificity to protein kinase A and protein phosphatase 2B in the rat brain. The distribution of AKAP150 was examined at rat hippocampal CA1 pyramidal cell asymmetric and symmetric post-synaptic densities and with respect to the distribution of markers of excitatory (vesicular glutamate transporter 1, glutamate receptor subunit 1) and inhibitory receptors (vesicular GABA transporter, GABA receptor type A beta2/3 subunits, gephyrin) and the Golgi marker, trans-Golgi network glycoprotein 38. ⋯ In contrast, we did not find AKAP150-immunoreactivity associated with inhibitory synapses in rat CA1 neurons, despite reports demonstrating an in vitro interaction between AKAP150 and GABA receptor type A receptor beta subunits, and the reported co-localization of these proteins in rat hippocampal cultures. There was some overlap between AKAP150 and GABA receptor type A receptor beta2/3-immunoreactivity intracellularly in perinuclear clusters. These findings support previous work indicating the integration of kinase and phosphatase activity at excitatory synapses by AKAP150, but do not support a role for selective targeting of AKAP150 and its accompanying proteins to inhibitory synapses.
-
Comparative Study
Endogenous neuropeptide Y depresses the afferent signaling of gastric acid challenge to the mouse brainstem via neuropeptide Y type Y2 and Y4 receptors.
Vagal afferents signal gastric acid challenge to the nucleus tractus solitarii of the rat brainstem. This study investigated whether nucleus tractus solitarii neurons in the mouse also respond to gastric acid challenge and whether this chemonociceptive input is modified by neuropeptide Y acting via neuropeptide Y receptors of type Y2 or Y4. The gastric mucosa of female mice was exposed to different concentrations of HCl or saline, excitation of neurons in the nucleus tractus solitarii visualized by c-Fos immunohistochemistry, gastric emptying deduced from the gastric volume recovery, and gastric lesion formation evaluated by planimetry. ⋯ BIIE0246, however, prevented the effect of peptide YY-(3-36) to inhibit gastric acid secretion as deduced from measurement of intragastric pH. The current data indicate that gastric challenge with acid concentrations that do not induce overt injury but inhibit gastric emptying is signaled to the mouse nucleus tractus solitarii. Endogenous neuropeptide Y acting via Y2 and Y4 receptors depresses the afferent input to the nucleus tractus solitarii by a presumably central site of action.