Neuroscience
-
The nucleus accumbens is part of the neural circuit that controls reward-seeking in response to reward-predictive cues. Dopamine release in the accumbens is essential for the normal functioning of this circuit. ⋯ These results indicate that dopamine is necessary to elicit neural activity in the accumbens that drives the behavioral response to cues. Here we show that accumbens dopamine release is causal to the rats' reward-seeking behavioral response by demonstrating that dopamine in this structure is both necessary and sufficient to promote the appropriate behavioral response to reward-predictive cues.
-
3-Hydroxyglutaric acid (3HGA) accumulates in the inherited neurometabolic disorder known as glutaryl-CoA dehydrogenase deficiency. The disease is clinically characterized by severe neurological symptoms, frontotemporal atrophy and striatum degeneration. Because of the pathophysiology of the brain damage in glutaryl-CoA dehydrogenase deficiency is not completed clear, we investigated the in vitro effect of 3HGA (0.01-5.0mM) on critical enzyme activities of energy metabolism, including the respiratory chain complexes I-V, creatine kinase isoforms and Na(+),K(+)-ATPase in cerebral cortex and striatum from 30-day-old rats. ⋯ Since 3HGA stimulated oxygen consumption in state IV and compromised ATP formation, it can be presumed that this organic acid might act as an endogenous uncoupler of mitochondria respiration. Finally, we observed that 3HGA changed C6 cell morphology from a round flat to a spindle-differentiated shape, but did not alter cell viability neither induced apoptosis. The data provide evidence that 3HGA provokes a moderate impairment of brain energy metabolism and do not support the view that 3HGA-induced energy failure would solely explain the characteristic brain degeneration observed in glutaryl-CoA dehydrogenase deficiency patients.
-
We used the hot plate test and the formalin test to evaluate the antinociception of choline after i.c.v. or i.v. administration. The analgesic mechanism of choline was also studied. The response latency of mice was significantly prolonged in the hot plate test after choline (90-120 mug/animals) i.c.v. administration in a dose-dependent manner. ⋯ Similarly, coadministration of choline (2 mg/kg) with morphine (0.165 mg/kg) significantly increased the antinociception of morphine in the late phase, but had no effect in the early phase. These results demonstrate that activation of alpha7 nicotinic receptors by choline elicits antinociceptive effects both in an acute thermal pain model and in an inflammatory pain model. Choline holds promise for development as a non-addictive analgesic drug and in reducing the regular dose of aspirin or morphine in inflammatory pain.
-
Functional segregation along the dorso-ventral axis of the hippocampus is a developing concept. The higher susceptibility of the ventral hippocampus to epileptic activity compared with dorsal hippocampus is one of the main features, which still has obscure mechanisms. Using the model of magnesium-free medium and field recordings, single epileptiform discharges displayed higher incidence (77% vs 57%), rate (41.7+/-3.1 vs 13.5+/-0.7 events/min), duration (173.9+/-17.7 vs 116.8+/-13.6 ms) and intensity (coastline, 25.4+/-2.5 vs 9.5+/-1.8) in ventral compared with dorsal rat hippocampal slices. ⋯ Most of the slices having experienced suppression did not develop persistent activity. We propose that the NMDA receptors contribute to the higher susceptibility of the ventral hippocampus to expression and long-term maintenance of epileptiform discharges. This diversification may be related to other aspects of hippocampal dorso-ventral functional segregation.
-
Nerve injury resulting in chronic pain is associated with novel excitatory effects of norepinephrine on injured peripheral nerve terminals and their cell bodies, due to actions on alpha2-adrenoceptors. Paradoxically, alpha2-adrenoceptor agonists administered near peripheral terminals or their cell bodies results in analgesia, not pain. This study tested, using intracellular Ca2+ response to stimulation, the effects of alpha2-adrenoceptor agonists on injured sensory neurons and classified their neuronal phenotype. ⋯ Spinal nerve ligation resulted in a 4-10-fold increase in the percentage of clonidine inhibited cells which immunostained for calcitonin gene-related peptide. These data are consistent with the known inhibition of Ca2+ currents by alpha2-adrenoceptors and suggest that, at the level of intracellular Ca2+, the key determinant of neurotransmitter release, alpha2-adrenoceptors are inhibitory after nerve injury, not excitatory. There is a shift in phenotype of sensory neurons which are inhibited by clonidine after nerve injury, which may explain clonidine's increased potency in the treatment of neuropathic compared with acute pain.