Neuroscience
-
Nitric oxide (NO) is a neurotransmitter of the autonomic nerves in the urogenital tract, in particular the release of NO in the cavernous tissue is of importance for maintaining erection. However, the regulation of NO formation in neurons of the corpus cavernosum is poorly understood. Here, we report, that upon electrical stimulation of isolated rabbit corpus cavernosum, NO/NO(2-) was formed and released in a reproducible fashion. ⋯ The effect of the phosphodiesterase inhibitor zaprinast (10(-4) M), was not significant (209+/-53%, n.s). In contrast, inhibition of sGC by 1-H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (10(-5) M) decreased the release of NO/NO(2-) to 64+/-14% (P<0.05). Our results suggest that NO/NO(2-) is released by nitrergic neurons within the rabbit corpus cavernosum and that the release is subject to modulation by the sGC/cGMP pathway, but not to modulation by acetylcholine or noradrenaline.
-
Comparative Study
ErbB1 receptor ligands attenuate the expression of synaptic scaffolding proteins, GRIP1 and SAP97, in developing neocortex.
Scaffolding proteins containing postsynaptic density-95/discs large/zone occludens-1 (PDZ) domains interact with synaptic receptors and cytoskeletal components and are therefore implicated in synaptic development and plasticity. Little is known, however, about what regulates the expression of PDZ proteins and how the levels of these proteins influence synaptic development. Here, we show that ligands for epidermal growth factor receptors (ErbB1) decrease a particular set of PDZ proteins and negatively influence synaptic formation or maturation. ⋯ Immunoblotting revealed that administered epidermal growth factor from the periphery activated brain ErbB1 receptors and decreased GRIP1 and SAP97 protein levels in the neocortex. Laser-confocal imaging indicated that epidermal growth factor administration suppressed the formation of pan-PDZ-immunoreactive puncta and dispersed those structures in vivo as well. These findings revealed a novel negative activity of ErbB1 receptor ligands that attenuates the expression of the PDZ proteins and inhibits postsynaptic maturation in developing neocortex.
-
Comparative Study
Direct binding of estradiol enhances Slack (sequence like a calcium-activated potassium channel) channels' activity.
17Beta-estradiol (E2) is a major neuroregulator, exerting both genomic and non-genomic actions. E2 regulation of Slack (sequence like a calcium-activated potassium channel) potassium channels has not been identified in the CNS. We demonstrate E2-induced activation of Slack channels, which display a unitary conductance of about 60 pS, are inhibited by intracellular calcium, and are abundantly expressed in the nervous system. ⋯ ERalpha or ERbeta). Neither E2-induced activation nor the binding intensity of E2 to the Slack channel is blocked by tamoxifen, an ER antagonist/agonist. Thus, E2 activates a potassium channel, Slack, through a non-traditional membrane binding site, adding to known non-genomic mechanisms by which E2 exerts pharmacological and toxicological effects in the CNS.
-
Comparative Study
Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala.
Substantial experimental evidence exists suggesting a critical role for dopamine in reinforcer-related processes, such as learning and drug addiction. Dopamine receptors, and in particular D1 receptors, are widely considered as modulators of synaptic plasticity. The amygdala contains both dopamine terminals and dopamine D1 receptors and is intimately involved in motivation and learning. ⋯ Control experiments indicated that basic motivational processes and general motor responses were intact, such as spontaneous feeding and locomotor activity. These results show an essential role for D1-receptor activation in both the central nucleus and basolateral complex on the acquisition of lever pressing for sucrose pellets in rats, but not the performance of the behavior once conditioned. We propose that instrumental learning is dependent on plasticity in the central nucleus and basolateral complex amygdala, and that D1 receptor activation participates in transcriptional processes that underlie this plasticity.
-
Comparative Study
Neural correlates of social odor recognition and the representation of individual distinctive social odors within entorhinal cortex and ventral subiculum.
Recognition of individual conspecifics is important for social behavior and requires the formation of memories for individually distinctive social signals. Individual recognition is often mediated by olfactory cues in mammals, especially nocturnal rodents such as golden hamsters. In hamsters, this form of recognition requires main olfactory system input to the lateral entorhinal cortex (LEnt). ⋯ This study reveals cellular mechanisms in LEnt and VS that may mediate a natural form of recognition memory in hamsters. These neuronal responses were similar to those observed in rats and monkeys during performance in standard recognition memory tasks. Consequently, the present data extend our understanding of the cellular basis for recognition memory and suggest that individual recognition requires similar neural mechanisms as those employed in laboratory tests of recognition memory.