Neuroscience
-
Comparative Study
Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions.
Restricted feeding-induced free-running oscillation of clock genes in the liver was studied in homozygous Clock-mutant (Clock/Clock) mice. Similar to wild-type mice, Clock/Clock mice showed robust food-anticipatory behavioral activity in accordance with a restricted feeding schedule. ⋯ However, during the fasting days after temporal feeding cues were removed, the oscillation of clock genes in the liver and heart, excluding the suprachiasmatic nuclei, appeared to result in arrhythmicity in Clock/Clock mice. Thus, although the CLOCK-based molecular mechanism is not required for the expression of food-anticipatory activity, intact CLOCK protein might be involved in sustaining several cycles of peripheral circadian oscillations after restricted feeding-induced resetting.
-
The Drosophila inhibitor-kappaB ortholog Cactus acts as an inhibitor of the Rel-transcription factors Dorsal and Dif. In blastoderm cells and immune competent cells, Cactus inhibits Dorsal and Dif by preventing their nuclear localization. Cactus, Dorsal and Dif are also expressed in somatic muscles, where Cactus and Dorsal, but not Dif, are enriched at the neuromuscular junction. ⋯ Interestingly, in cactus mutants the subcellular localization of Dorsal and Dif in muscle is not affected, whereas cactus protein is not detected in the nucleus. This suggests, together with the similarities between the phenotypes induced by cactus and dorsal mutations, that in larval muscles the function of Cactus might be cooperation to the transcriptional activity of Rel proteins more than their cytoplasmic retention. The similarities with inhibitor-kappaB/nuclear factor kappaB interactions and muscle pathology in mammals point to Drosophila as a suitable experimental system to clarify the complex interactions of these proteins in muscle postembryonic development and activity.
-
The present study was conducted to test the hypothesis that the peripheral 5-hydroxytryptamine (5-HT)2A receptor is involved in inflammatory hyperalgesia and production of noxious stimulus-induced neuronal activity at the level of the spinal cord dorsal horn. Intraplantar (i.pl.) injection of carrageenan dramatically reduced paw withdrawal latency to noxious heat (47 degrees C) and caused paw swelling. Pretreatment with ketanserin, a selective antagonist of 5-HT2A receptor, in the hindpaw produced dose-dependent inhibition of the hyperalgesia (0.5, 3 and 5 mug; i.pl.) with full relief at 5 mug. ⋯ Ketanserin (5 mug) markedly reduced carrageenan-induced FLI in all laminae of the dorsal horn. However, blockade of peripheral 5-HT1A receptors by (N-2-[4-(2-methoxyphenyl-1-piperazinyl] ethyl]-N-2-pyridinylcyclohexanecarboxamide at maximally effective doses (30 and 100 mug; i.pl.) did not alter carrageenan-induced hyperalgesia, edema or expression of FLI. The present study provided evidence at cellular level that the peripheral 5-HT2A receptor is preferentially involved in the development of thermal hyperalgesia in the carrageenan model of inflammation.
-
Current evidence suggests that behavioral sensitization to the chronic administration of levodopa (L-DOPA) to dopamine-depleted animals involves a plasticity of GABA-mediated signaling in output regions of the basal ganglia. The purpose of this study was to compare in adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion the effects of an acute or chronic (for 3 or 7 days) injection of L-DOPA on mRNA levels encoding for glutamic acid decarboxylase (GAD65 and GAD67) in the striatum and GABA(A) receptor alpha1, beta2 and gamma2 subunits in the substantia nigra, pars reticulata (SNr), by in situ hybridization histochemistry. In addition, immunostaining levels for the alpha1 subunit were examined in the SNr. ⋯ In addition, alpha1 immunostaining in the SNr was significantly decreased in rats injected for 7 days but not for 3 days or acutely with L-DOPA. Our results demonstrate that a chronic administration of L-DOPA results in a progressive increase in GAD and decrease in GABA(A) receptor expression in the striatum and SNr, respectively. They provide further evidence that behavioral sensitization and dyskinesia induced by a chronic administration of L-DOPA in an experimental model of Parkinson's disease is paralleled by a plasticity of GABA-mediated signaling in the SNr.
-
Comparative Study
Thalamic regulation of striatal acetylcholine efflux is both direct and indirect and qualitatively altered in the dopamine-depleted striatum.
Striatal cholinergic interneurons play a pivotal role in the integrative sensorimotor functions of the basal ganglia. The major excitatory input to these interneurons arises from glutamatergic neurons of the parafascicular nucleus of the thalamus (Pf). Thalamic regulation of cholinergic interneurons, however, may also include an indirect inhibitory component mediated by the axon collaterals of GABAergic medium spiny neurons that are also innervated by Pf. ⋯ Baseline ACh efflux was not significantly elevated in dopamine-lesioned animals. These results indicate a qualitative alteration in the effectiveness of an inhibitory component of the thalamic regulation of ACh efflux in the dopamine depleted striatum, evident during increased thalamostriatal input. Such altered regulation of striatal ACh output is likely to have profound consequences for integrative function in the parkinsonian basal ganglia.