Neuroscience
-
Our goal was to test the following hypotheses: 1) GABA(A) receptors facilitate neurokinin release from primary afferent terminals; 2) they do this by suppressing an inhibitory effect of GABA(B) receptors; 3) the activation of these two receptors is controlled by the firing frequency of primary afferents. We evoked neurokinin release by stimulating the dorsal root attached to spinal cord slices, and measured it using neurokinin 1 receptor (NK1R) internalization. Internalization evoked by root stimulation at 1 Hz (but not at 100 Hz) was increased by the GABA(A) receptor agonists muscimol (effective concentration of drug for 50% of the increase [EC50] 3 microM) and isoguvacine (EC50 4.5 microM). ⋯ The GABA(B) agonist baclofen inhibited NK1R internalization evoked by 100 Hz root stimulation (IC50 1.5 microM), whereas the GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl) phosphinic acid (CGP-55845) increased NK1R internalization evoked by 1 Hz root stimulation (EC50 21 nM). Importantly, baclofen inhibited isoguvacine-facilitated neurokinin release, and CGP-55845 reversed the inhibition of neurokinin release by bicuculline. In conclusion, 1) GABA(B) receptors located presynaptically in primary afferent terminals inhibit neurokinin release; 2) GABA(A) receptors located in GABAergic interneurons facilitate neurokinin release by suppressing GABA release onto these GABA(B) receptors; 3) high frequency firing of C-fibers stimulates neurokinin release by activating GABA(A) receptors and inhibiting GABA(B) receptors, whereas low frequency firing inhibits neurokinin release by the converse mechanisms.
-
Comparative Study
Hypothalamic and zona incerta neurons expressing hypocretin, but not melanin concentrating hormone, project to the hamster intergeniculate leaflet.
The hypocretins (Hcrt; also known as orexins) and melanin-concentrating hormone comprise distinct families of neuropeptides synthesized in cells located in the lateral hypothalamus and adjacent areas. The Hcrts are thought to modulate food intake and sleep/wake patterns in mammals. Melanin-concentrating hormone has a well-documented role in energy metabolism. ⋯ No cholera toxin beta-subunit-immunoreactive cells also contained melanin-concentrating hormone and no melanin-concentrating hormone-immunoreactive processes were evident in the intergeniculate leaflet. The results show that a small number of lateral hypothalamus cells containing Hcrt-immunoreactivity project to the intergeniculate leaflet, but they are scattered rather than collected into a discrete group. At the present time there is no information regarding the function of these cells, although they may contribute to the regulation of sleep/arousal, circadian rhythmicity, or vestibulo-oculomotor function.
-
The central nucleus of the amygdala (CeA) plays an important role both in stimulus-reward learning for the reinforcing effects of drugs of abuse and in environmental condition-induced analgesia. Both of these two CeA functions involve the opioid system within the CeA. However, the pharmacological profiles of its opioid receptor system have not been fully studied and the synaptic actions of opioid receptors in the CeA are largely unknown. ⋯ Furthermore, the mu-opioid inhibition of the EPSC was blocked by 4-aminopyridine (4AP; 100 microM), a voltage-dependent potassium channel blocker, and by phospholipase A(2) inhibitors AACOCF(3) (10 microM) and quinacrine (10 microM). These results indicate that only the mu-opioid receptor is functionally present on presynaptic glutamatergic terminals in normal CeA neurons, and its activation reduces the probability of glutamate release through a signaling pathway involving phospholipase A(2) and the presynaptic, 4AP-sensitive potassium channel. This study provides evidence for the presynaptic regulation of glutamate synaptic transmission by mu-opioid receptors in CeA neurons.
-
Comparative Study
Kainate mediates nuclear factor-kappa B activation in hippocampus via phosphatidylinositol-3 kinase and extracellular signal-regulated protein kinase.
The transcription factor nuclear factor-kappa B (NF-kappaB) is an inducible regulator of genes that plays a crucial role in the nervous system. Glutamate receptor stimulation is one well-described mechanism for NF-kappaB activation. In the studies presented here we used the glutamate analog, kainate to investigate the signaling mechanisms that couple to NF-kappaB activation in hippocampus. ⋯ Kainate elicited decreased total and increased phospho-inhibitor kappa B alpha (IkappaBalpha), suggesting that kainate-mediated activation of NF-kappaB is via the classical IkappaB kinase pathway. Interestingly, inhibition of ERK but not PI3K blocked the kainate-mediated increase in phospho-IkappaBalpha. Thus, our findings support a role for the ERK and PI3K pathways in kainate-mediated NF-kappaB activation in hippocampal area CA3, but these kinases may target the NF-kappaB pathway at different loci.
-
Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. ⋯ Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the downstream pathways activated by intracellular calcium overload.