Neuroscience
-
Opiates produce analgesia by activating mu opioid receptor-linked inhibitory G protein signaling cascades and related ion channel interactions that suppress cellular activities by hyperpolarization. After chronic opiate exposure, an excitatory effect emerges contributing to analgesic tolerance and opioid-induced hyperalgesia. Ultra-low-dose opioid antagonist co-treatment blocks the excitatory effects of opiates in vitro, as well as opioid analgesic tolerance and dependence, as was demonstrated here with ultra-low-dose naloxone combined with morphine. ⋯ Although chronic morphine decreased Gi/o coupling by mu opioid receptors, a pronounced coupling to Gs emerged coincident with a Gbetagamma interaction with adenylyl cyclase types II and IV. Co-treatment with ultra-low-dose naloxone attenuated both the chronic morphine-induced Gs coupling and the Gbetagamma signaling to adenylyl cyclase, while increasing Gi/o coupling toward or beyond vehicle control levels. These findings provide a molecular mechanism underpinning opioid tolerance and dependence and their attenuation by ultra-low-dose opioid antagonists.
-
Phosphorylation of the transcription factor cyclic AMP (cAMP)-response element-binding protein (CREB) has been implicated in long-term synaptic plasticity and memory, and its activation has been proposed to be required for the maintenance of long-term potentiation (LTP). The previously described temporal dynamics of CREB phosphorylation during the maintenance of LTP showed differences between experimental models. In the present study the level of CREB phosphorylation was evaluated in organotypic hippocampal slices from young adult rats (P25-30) after long-lasting LTP was induced. ⋯ Both CREB activation and LTP induction in mature cultured slices required N-methyl-D-aspartate (NMDA) receptor activation. CREB phosphorylation continued to increase for 4 h during LTP maintenance. This sustained activation is in contrast to previous observations in acutely prepared slices and supports the hypothesis that CREB plays an important role during the late phases of LTP.
-
Comparative Study
Activation of lateral hypothalamic neurons stimulates brown adipose tissue thermogenesis.
The lateral hypothalamic area, containing orexin neurons, is involved in several aspects of autonomic regulation, including thermoregulation and energy expenditure. To determine if activation of lateral hypothalamic area neurons influences sympathetically-regulated thermogenesis in brown adipose tissue, we microinjected bicuculline (120 pmol, 60 nl, unilateral) into the lateral hypothalamic area in urethane/chloralose-anesthetized, artificially-ventilated rats. ⋯ Subsequent microinjections of glycine (30 nmol, 60 nl) to inhibit local neurons in raphe pallidus or in dorsomedial hypothalamus or of glutamate receptor antagonists into dorsomedial hypothalamus promptly reversed the increases in brown adipose tissue sympathetic nerve activity, brown adipose tissue temperature and heart rate evoked by disinhibition of neurons in lateral hypothalamic area. We conclude that neurons in the lateral hypothalamic area can influence brown adipose tissue sympathetic nerve activity, brown adipose tissue thermogenesis and heart rate through pathways that are dependent on the activation of neurons in dorsomedial hypothalamus and raphe pallidus.
-
We investigated whether there is endogenous acetylcholine (ACh) release in the preBötzinger Complex (preBötC), a medullary region hypothesized to contain neurons generating respiratory rhythm, and how endogenous ACh modulates preBötCneuronal function and regulates respiratory pattern. Using a medullary slice preparation from neonatal rat, we recorded spontaneous respiratory-related rhythm from the hypoglossal nerve roots (XIIn) and patch-clamped preBötC inspiratory neurons. Unilateral microinjection of physostigmine, an acetylcholinesterase inhibitor, into the preBötC increased the frequency of respiratory-related rhythmic activity from XIIn to 116+/-13% (mean+/-S. ⋯ In the presence of both 4-DAMP and DH-beta-E, physostigmine induced opposite effects, i.e. a decrease in frequency and amplitude of XIIn rhythmic activity. These results suggest that there is cholinergic neurotransmission in the preBötC which regulates respiratory frequency, and in XII nucleus which regulates tonic activity, and the amplitude and duration of inspiratory bursts of XIIn in neonatal rats. Physiologically relevant levels of ACh release, via mAChRs antagonized by 4-DAMP and nAChRs antagonized by DH-beta-E, modulate the excitability of inspiratory neurons and excitatory neurotransmission in the preBötC, consequently regulating respiratory rhythm.
-
Comparative Study
Evidence that peripheral rather than intracranial thermal signals induce thermoregulation.
Numerous effector mechanisms have been discovered, which change body temperature and thus serve to maintain the thermal integrity of homeothermic animals. These mechanisms are driven by thermal signals that are processed by neurons in the hypothalamic preoptic area. To keep a tight control over body temperature, these neurons have to receive accurate thermal information. ⋯ Since the brain temperature did not decrease, it is unlikely that intracranial thermoreceptors are involved in the transmission of "cold" thermal signal to induce thermoregulation. At 30 min of cold exposure, neurons in all known thermoregulatory areas (like the ventrolateral part of the medial preoptic nucleus, the lateral retrochiasmatic area, the lateral parabrachial nucleus and the peritrigeminal nucleus) were already maximally activated. These observations clearly indicate that the activation of neurons in the preoptic and several other thermoregulatory nuclei is induced in vivo by thermal signals originating in the periphery, and not in the CNS.