Neuroscience
-
Recently, it was reported that stimulation of the infralimbic cortex produces a feedforward inhibition of central amygdala neurons. The interest of this observation comes from the fact that the central nucleus is the main output station of the amygdala for conditioned fear responses and evidence that the infralimbic cortex plays a critical role in the extinction of conditioned fear. However, the identity of the neurons mediating this infralimbic-evoked inhibition of the central nucleus remains unknown. ⋯ In the basolateral amygdaloid complex, increases in the number of Fos-immunoreactive cells only reached significance in the contralateral lateral nucleus. These results suggest that glutamatergic inputs from the infralimbic cortex directly activate intercalated neurons. Thus, our findings raise the possibility that the infralimbic cortex inhibits conditioned fear via the excitation of intercalated cells and the consequent inhibition of central amygdala neurons.
-
Increasing evidence suggests that abnormal iron handling may be involved in the pathogenesis of Parkinson's disease. The present study investigates the role of iron and the iron-storage protein ferritin in inflammation-induced degeneration of dopaminergic neurons of the substantia nigra pars compacta. Injection of lipopolysaccharide into the globus pallidus of young and middle-aged rats substantially decreased tyrosine hydroxylase immunostaining in substantia nigra pars compacta four weeks after injection. ⋯ Intrapallidal lipopolysaccharide injection also increased expression of alpha-synuclein and ubiquitin in tyrosine hydroxylase-positive neurons of the substantia nigra pars compacta. These results suggest that pallidal inflammation significantly increases stress on dopamine-containing neurons in the substantia nigra pars compacta. Alterations in nigral iron levels and protein handing may increase the vulnerability of nigral neurons to degenerative processes.
-
Etomidate (ET), an imidazole general anesthetic, has been medically widely used. Recent evidence suggests that the inhibitory neurotransmitter GABA receptor may be one of the important molecular target(s) of general anesthetics. Up to date, little attention has been directed toward the sacral dorsal commissural nucleus (SDCN), which serves as a relay of sensory information from the pelvic viscera in the spinal cord. ⋯ At lower concentrations (0.1-100 microM), ET reversibly potentiated GABA (1 microM)-activated Cl(-) currents in a bell-shaped manner, with the maximal facilitative effect at 10 microM, whereas at concentrations >100 microM, the peak of the ET-induced current was suppressed in the absence or presence of GABA (1 microM). These results suggest that in SDCN, in addition to the potentiation of GABA(A) receptor-mediated responses at low concentrations and the direct activation of GABA(A) receptors at moderate concentrations as expected, ET produced a fast blocking action at high concentrations. The general anesthetic-induced effects in SDCN, at least the potentiation of GABA responses, may significantly contribute to anesthesia of pelvic viscera during the general anesthesia.
-
Glial cells interact with neurons and play important roles in the development, differentiation, maintenance and repair of the nervous system. Human neuroblastoma cells (SH-SY5Y) became dramatically resistant to neurotoxin 6-hydroxydopamine (6-OHDA), when co-cultured with mouse astrocytes. In order to further delineate the molecular mechanism involved in the neuroprotection in this selective cell-cell interaction, we assessed the activation of two signal pathways, namely, the MAP kinases (extracellular signal-regulated kinases, ERK1/2) and phosphoinositide 3-kinase (PI3-K)/Akt signal pathways in response to 6-OHDA insult and subsequent neuronal survival. ⋯ Selective inhibitor of PI3-K/Akt signal pathway blocked the acquired resistance to 6-OHDA in SH-SY5Y cells following interaction with astrocytes. Inhibition of ERK1/2 signal pathway did not affect the cell survival. Our data suggest that PI3-K/Akt signal pathway, but not ERK1/2, is involved the acquired resistance in SH-SY5Y cells following cell-cell interaction with astrocytes against the neurotoxic 6-OHDA insult.
-
Comparative Study
Developmental emergence of hippocampal fast-field "ripple" oscillations in the behaving rat pups.
Sharp wave and associated fast oscillatory ripples (140-200 Hz) in the cornu ammonis 1 region are the most synchronous hippocampal patterns in the adult rat. Spike sequences associated with sharp waves are believed to play a critical role in transferring transient memories from the hippocampus to the neocortex and the emergence of superfast ripples is pathognostic in temporal lobe epilepsy. Sharp waves in cornu ammonis 1 stratum radiatum are induced by a strong depolarization by the cornu ammonis 3 Schaffer collaterals, due to the synchronous discharge of cornu ammonis 3 pyramidal cells. ⋯ Once ripples emerged, the intra-ripple frequency assumed adult values. The developmental time course of the ripple parallels the switch in the GABA(A) receptor-mediated signaling from excitation to inhibition. The time course may also reflect hitherto unidentified emergence of neuronal gap junctions.