Neuroscience
-
The projections of the substantia nigra pars compacta (SNc) to the reticular thalamic nucleus (RTn) were assessed by measuring dopamine content and counting tyrosine hydroxylase positive (TH (+)) cells in rats with unilateral lesions induced by 6-hydroxydopamine (6-OHDA), and by using a fluorescent tract-tracing technique in rats without lesions. Injection of 6-OHDA in the RTn reduced dopamine content and the number of TH (+) cells in the SNc by about 50%. Branching of SNc was suggested by the finding that 6-OHDA deposited in the RTn significantly reduced dopamine in the striatum and globus pallidus. ⋯ Other experiments showed that systemic injection of apomorphine or methamphetamine induced turning behavior in rats with local deposits of 6-OHDA in either the RTn or the studied basal ganglia nuclei. The extensive dopaminergic branching suggests that the abnormal motor behavior of rats with 6-OHDA deposits in the RTn may be caused by dopaminergic denervation of more than one structure. The fact that lesion of a single dopaminergic neuron can reduce dopamine transmission in more than one structure is probably important in generating the manifestations of Parkinson's disease.
-
In the adult CNS, GABA is the predominant inhibitory neurotransmitter, mediating the hyperpolarization of membrane potential and regulating the glutamatergic activity. In the immature CNS, on the other hand, GABA mediates depolarization and is involved in controlling morphogenesis. This developmental shift in GABA actions from depolarization to hyperpolarization occurs as a result of decreasing the intracellular chloride ion (Cl(-)) concentration ([Cl(-)](i)) which is regulated by the potassium (K(+))-Cl(-) co-transporter 2 (KCC2). ⋯ As development proceeded, the number of KCC2-positive granule cells increased, and all granule cells became positive by P21. These results suggested that GABAergic transmission on granule cells might shift from excitation to inhibition after the synapse formation, and the excitatory synapse-formation and related factors might be the triggers for the expression and localization of the KCC2 in the granule cells. Furthermore, it was also suggested that formation of the GABAergic synapses and GABAergic transmission were not necessary for the KCC2-expression in the mouse cerebellar granule cells in vivo.
-
Spinal cord stimulation (SCS) is an established treatment for chronic neuropathic pain. However, in recent studies conflicting results regarding the effect of SCS were noted in a selected group of patients suffering from complex regional pain syndrome and mechanical allodynia. In the present study we investigated the pain relieving effect of SCS in a rat experimental model of neuropathic pain as related to the severity of mechanical allodynia. ⋯ Our data demonstrate a differential effect of SCS related to the severity of the mechanical allodynia. SCS leads to a faster and better pain relief in mildly allodynic rats as compared with the more severely allodynic rats. Thus, we suggest that the selection and subdivision of patient groups similar to those defined in our experimental setting (mild, moderate and severe allodynic) may provide better pre-treatment prediction of possible therapeutic benefits of SCS.
-
Superoxide produced by the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mediates crucial intracellular signaling cascades in the medial nucleus of the solitary tract (mNTS), a brain region populated by catecholaminergic neurons, as well as astroglia that play an important role in autonomic function. The mechanisms mediating NADPH oxidase (phagocyte oxidase) activity in the neural regulation of cardiovascular processes are incompletely understood, however the subcellular localization of superoxide produced by the enzyme is likely to be an important regulatory factor. We used immunogold electron microscopy to determine the phenotypic and subcellular localization of the NADPH oxidase subunits p47(phox), gp91(phox,) and p22(phox) in the mNTS in rats. ⋯ These results indicate that NADPH oxidase assembly and consequent superoxide formation are likely to occur near the plasmalemma, as well as on vesicular organelles associated with intracellular calcium storage within mNTS neurons and glia. Thus, NADPH oxidase-derived superoxide may participate in intracellular signaling pathways linked to calcium regulation in diverse mNTS cell types. Moreover, NADPH oxidase-derived superoxide in neurons and glia may directly or indirectly modulate catecholaminergic neuron activity in the mNTS.
-
Recent data support an important role for calcitonin gene-related peptide (CGRP) in deep tissue nociceptive processing. Using real-time reverse transcriptase polymerase chain reaction (RT-PCR), radioimmunoassay, immunohistochemistry and behavioral testing, we studied the early time course of CGRP mRNA and protein expression as well as nociceptive behavior following muscle inflammation. A rapid and significant increase in CGRP mRNA occurred in the mandibular division (V3) of the ipsilateral trigeminal ganglion at 30 minutes, 4 and 24 h after the injection of complete Freund's adjuvant as an inflammatory agent into rat masseter muscle. ⋯ Behavioral testing showed a reduction in head withdrawal thresholds bilaterally from 30 min through 24 h following muscle inflammation. Thus upregulation of CGRP mRNA and iCGRP levels are temporally related to the development of inflammation and lowered pain thresholds. The present data support the hypothesis that CGRP is upregulated during deep tissue inflammation and suggest that gene transcription is involved in this upregulation.