Neuroscience
-
We investigated the contribution of peripheral 5-HT2A or 5-HT3 receptors to Fos expression in the trigeminal spinal nucleus (VSP) following acute masseter muscle injury in male rats with or without temporomandibular joint (TMJ) inflammation persisting for 7 days. TMJ inflammation was evoked by an injection of complete Freund's adjuvant (CFA). Two hours after formalin injection into the masseter muscle produced Fos-like immunoreactivity (Fos-LI) in several regions of the VSP and upper cervical spinal cord (C2), such as ventrolateral (vl) area of the trigeminal subnucleus caudalis (Vc)/subnucleus interpolaris (Vi) transition (vl-Vi/Vc), paratrigeminal nucleus (dPa5), middle portion of the Vc (mid-Vc) and Vc/C2 transition (Vc/C2) regions in both groups. ⋯ The Fos-LI response was not affected by i.v. administration of ketanserin (0.01, 0.1 mg/rat) or tropisetron (0.01 mg/rat). In non-CFA group, these antagonists given locally did not reduce the Fos-LI response. These results suggest that peripheral 5-HT2A and 5-HT3 receptors contribute to nociceptive processing in the masseter muscle in TMJ inflammatory conditions.
-
Recent data support an important role for calcitonin gene-related peptide (CGRP) in deep tissue nociceptive processing. Using real-time reverse transcriptase polymerase chain reaction (RT-PCR), radioimmunoassay, immunohistochemistry and behavioral testing, we studied the early time course of CGRP mRNA and protein expression as well as nociceptive behavior following muscle inflammation. A rapid and significant increase in CGRP mRNA occurred in the mandibular division (V3) of the ipsilateral trigeminal ganglion at 30 minutes, 4 and 24 h after the injection of complete Freund's adjuvant as an inflammatory agent into rat masseter muscle. ⋯ Behavioral testing showed a reduction in head withdrawal thresholds bilaterally from 30 min through 24 h following muscle inflammation. Thus upregulation of CGRP mRNA and iCGRP levels are temporally related to the development of inflammation and lowered pain thresholds. The present data support the hypothesis that CGRP is upregulated during deep tissue inflammation and suggest that gene transcription is involved in this upregulation.
-
The loss of dopamine in idiopathic or animal models of Parkinson's disease induces synchronized low-frequency oscillatory burst-firing in subthalamic nucleus neurones. We sought to establish whether these firing patterns observed in vivo were preserved in slices taken from dopamine-depleted animals, thus establishing a role for the isolated subthalamic-globus pallidus complex in generating the pathological activity. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed significant reductions of over 90% in levels of dopamine as measured in striatum by high pressure liquid chromatography. ⋯ Furthermore, pairs of subthalamic nucleus cells showed no correlated activity in slices from either control (21 pairs) or MPTP-treated animals (20 pairs). These results indicate that the isolated but interconnected subthalamic-globus pallidus network is not itself sufficient to generate the aberrant firing patterns in dopamine-depleted animals. More likely, inputs from other regions, such as the cortex, are needed to generate pathological oscillatory activity.
-
The posterior parietal cortex (PPC) plays an integral role in visuospatial attention. Evidence suggests that neuronal activity in the PPC predicts the allocation of attention to stimuli. The present experiment tested the hypothesis that in rats performing a sustained attention task, the detection of signals, as opposed to missed signals, is associated with increased PPC unit activity. ⋯ Analysis of populations of simultaneously recorded neurons indicated increased activation predicting signal detection; no population of neurons was activated on trials in which the animal incorrectly pressed the hit lever following nonsignals. The increased, hit-predicting activity was not modulated by signal duration or the presence of a visual distractor, although the distractor reduced the number of trials in which hit-predicting activity and subsequent correct detection occurred. These findings indicate that attentional signal processing in the PPC integrates successful detection of signals.
-
In the CNS, l-serine (l-Ser) plays an essential role in neuronal survival by evoking a variety of biological responses in glial cells. Initially, we examined whether glutamate, hydrogen peroxide (H(2)O(2)), interleukin-1 (IL-1) beta, and sodium nitroprusside (SNP) induce the secretion of l-Ser in astrocytes isolated from Wistar Kyoto rats (WKY). The secretion of l-Ser was significantly induced with glutamate and SNP in cultured astrocytes. ⋯ The results suggest that the attenuated secretion of l-Ser in astrocytes is involved in neuronal vulnerability and survival in SHRSP during the production of glutamate, as the secretion of l-Ser, which is stimulated by glutamate, is closely related to the protective effect against glutamate-mediated neurotoxicity. We conclude that glutamate and SNP up-regulate the secretion of l-Ser in primary astrocytes. Secretion of l-Ser is regulated in astrocytes in response to glutamate and nitric oxide and may correspond to the level of l-Ser needed for neuronal survival during brain insults such as ischemic stroke in SHRSP.