Neuroscience
-
The GABAB receptors are generally considered to be classical Gi-coupled receptors that lack the ability to mobilize intracellular Ca2+ without the aid of promiscuous G proteins. Here, we report the ability of GABAB receptors to promote calcium influx into primary cultures of rat cortical neurons and transfected Chinese hamster ovary cells. Chinese hamster ovary cells were transfected with GABAB1(a) or GABAB1(b) subunits along with GABAB2 subunits. ⋯ The selective store-operated channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride prevented increases in intracellular Ca2+ levels as did performing the assays in Ca2+ free buffers. In conclusion, GABAB receptors expressed in Chinese hamster ovary cells and endogenously expressed in rat cortical neurons promote Ca2+ entry into the cell via the activation of store-operated channels, using a mechanism that is dependent on Gi/o heterotrimeric proteins and phospholipase Cbeta. These findings suggest that the neuronal effects mediated by GABAB receptors may, in part, rely on the receptor's ability to promote Ca2+ influx.
-
The monocarboxylate transporters 1 and 4 are expressed in brain as well as in skeletal muscle and play important roles in the energy metabolism of both tissues. In brain, monocarboxylate transporter 1 occurs in astrocytes, ependymocytes, and endothelial cells while monocarboxylate transporter 4 appears to be restricted to astrocytes. In muscle, monocarboxylate transporter 1 is enriched in oxidative muscle fibers whereas monocarboxylate transporter 4 is expressed in all fibers, with the lowest levels in oxidative fiber types. ⋯ Our findings show that cross-reinnervation causes pronounced changes in the expression levels of monocarboxylate transporter 1 and monocarboxylate transporter 4, probably as a direct consequence of the new pattern of nerve impulses. The data indicate that the mode of innervation dictates the expression of monocarboxylate transporter proteins in the target cells and that the change in monocarboxylate transporter isoform profile is an integral part of the muscle fiber transformation that occurs after cross-reinnervation. Our findings support the hypothesis that the expression of monocarboxylate transporter 1 and monocarboxylate transporter 4 in excitable tissues is regulated by activity.
-
The expression of Kv3.1 and Kv3.2 voltage-gated potassium channel subunits appears to be critical for high-frequency firing of many neuronal populations. In the cortex these subunits are mainly associated with fast-firing GABAergic interneurons containing parvalbumin or somatostatin. Since the basolateral nuclear complex of the amygdala contains similar interneurons, it is of interest to determine if these potassium channel subunits are expressed in these same interneuronal subpopulations. ⋯ These Kv3.2-containing somatostatin+ interneurons constituted 27-50% of the somatostatin+ population, depending on the nucleus in question. These data suggest that both fast-firing and burst-firing parvalbumin+ interneurons in the basolateral amygdala express the Kv3.1b subunit. The significance of Kv3.2 expression in some parvalbumin+ and somatostatin+ interneurons remains to be determined.
-
Ca(V)1.2 and Ca(V)1.3, are the main dihydropyridine-sensitive L-type calcium channel isoforms in the brain. To reveal the contribution of each isoform to the neuronal activation pattern elicited by the dihydropyridine L-type calcium channel activator BayK 8644, we utilized Fos expression as a marker of neuronal activation in mutant mice (Ca(V)1.2(DHP-/-) mice) expressing dihydropyridine-insensitive Ca(V)1.2 L-type calcium channels. BayK 8644-treated wildtype mice displayed intense and widespread Fos expression throughout the neuroaxis in 77 of 80 brain regions quantified. ⋯ BayK 8644-induced Fos expression in Ca(V)1.2(DHP-/-) mice indicating predominantly Ca(V)1.3 L-type calcium channel-mediated activation was noted in more restricted neuronal populations (20 of 80), in particular in the central amygdala, the bed nucleus of the stria terminalis, paraventricular hypothalamic nucleus, lateral preoptic area, locus coeruleus, lateral parabrachial nucleus, central nucleus of the inferior colliculus, and nucleus of the solitary tract. Our data indicate that selective stimulation of other than Ca(V)1.2 L-type calcium channels, mostly Ca(V)1.3, causes neuronal activation in a specific set of mainly limbic, hypothalamic and brainstem areas, which are associated with functions including integration of emotion-related behavior. Hence, selective modulation of Ca(V)1.3 L-type calcium channels could represent a novel (pharmacotherapeutic) tool to influence these CNS functions.
-
Food intake is regulated by signals from the gastrointestinal tract. Both stimulation and inhibition of food intake may be mediated by upper gastrointestinal tract hormones, e.g. ghrelin and cholecystokinin that act at least partly via vagal afferent neurones. We now report that vagal afferent neurones in both rat and man express melanin-concentrating hormone and its receptor, melanin-concentrating hormone-1R. ⋯ The cholecystokinin-1 receptor antagonist lorglumide inhibited food-induced down-regulation of melanin-concentrating hormone and melanin-concentrating hormone-1R. We conclude that the satiety hormone cholecystokinin acts on vagal afferent neurones to inhibit expression of melanin-concentrating hormone and its receptor. Since the melanin-concentrating hormone system is associated with stimulation of food intake this effect of cholecystokinin may contribute to its action as a satiety hormone.