Neuroscience
-
Comparative Study
Hypoxia/ischemia expands the regenerative capacity of progenitors in the perinatal subventricular zone.
Neurons and oligodendrocyte progenitors are highly sensitive to perinatal hypoxic-ischemic injury. As accumulating evidence suggests that many insults to the human infant occur in utero, and preventing brain damage to infants in utero will prove difficult, there is strong rationale to pursue regenerative strategies to reduce the morbidity associated with developmental brain injuries. The purpose of this study was to determine whether a hypoxic-ischemic insult stimulates the neural stem/progenitor cells in the subventricular zone to generate new neurons and oligodendrocytes. ⋯ Hypoxia-ischemia also increases neurogenesis in vivo. Doublecortin positive cells with migratory profiles were observed streaming from the ipsilateral subventricular zone to the striatum and neocortex, whereas, few doublecortin positive cells were found in the contralateral hemisphere after hypoxia-ischemia. These observations provide evidence that the somatic neural progenitors of the subventricular zone participate in the production of new brain cells lost after hypoxia-ischemia.
-
Comparative Study
Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase.
PDE10A is a recently identified phosphodiesterase that is highly expressed by the GABAergic medium spiny projection neurons of the mammalian striatum. Inhibition of PDE10A results in striatal activation and behavioral suppression, suggesting that PDE10A inhibitors represent a novel class of antipsychotic agents. In the present studies we further elucidate the localization of this enzyme in striatum of rat and cynomolgus monkey. ⋯ Immuno-electron microscopy of striatum confirms that PDE10A is most often associated with membranes in dendrites and spines. Immuno-gold particles are observed on the edge of the postsynaptic density but not within this structure. Our studies indicate that PDE10A is associated with post-synaptic membranes of the medium spiny neurons, suggesting that the specialized compartmentation of PDE10A enables the regulation of intracellular signaling from glutamatergic and dopaminergic inputs to these neurons.