Neuroscience
-
Comparative Study
Functional roles of 5-hydroxytryptamine 3/4 receptors in neurons of rat dorsal motor nucleus of the vagus.
In neurons of dorsal motor nucleus of the vagus that is involved in the gastric motility and possibly emesis, application of 5-hydroxytryptamine produces membrane depolarization, and suppresses spike-repolarization and spike-afterhyperpolarization, suggesting divergent effects of 5-hydroxytryptamine through activating multiple subtypes of 5-hydroxytryptamine receptors. However, only the role of 5-hydroxytryptamine 2A receptors has been established to be responsible for the depolarization, and the mechanisms underlying the modulation of spikes remain unknown although a role of 5-hydroxytryptamine 4 receptors was implicated in modulations of spikes. There is now increasing evidence for the role of 5-hydroxytryptamine receptors in neurons involved in generating emesis following administration of anticancer drug. ⋯ Under a voltage-clamp condition, dorsal motor nucleus of the vagus neurons expressed a prominent A-like current. The activation of 5-hydroxytryptamine 3 receptors reversibly increased the resting membrane conductance while the activation of 5-hydroxytryptamine 4 receptors led to an almost irreversible decrease in the A-like current. A long-lasting suppression of A-like current by transient activation of 5-hydroxytryptamine 4 receptors would result in a long-lasting increase in the excitability of dorsal motor nucleus of the vagus neurons, which might be involved in generation of the long-lasting facilitation of gastric motility or in generation of the long-lasting gastric relaxation through the activation of enteric non-adrenergic non-cholinergic neurons as implicated in the delayed emesis induced by anticancer drugs.
-
Comparative Study
Alpha-2 adrenergic regulation of pedunculopontine nucleus neurons during development.
Rapid eye movement sleep decreases between 10 and 30 days postnatally in the rat. The pedunculopontine nucleus is known to modulate waking and rapid eye movement sleep, and pedunculopontine nucleus neurons are thought to be hyperpolarized by noradrenergic input from the locus coeruleus. The goal of the study was to investigate the possibility that a change in alpha-2 adrenergic inhibition of pedunculopontine nucleus cells during this period could explain at least part of the developmental decrease in rapid eye movement sleep. ⋯ These results suggest that the alpha-2 adrenergic receptor on cholinergic pedunculopontine nucleus neurons activated by clonidine may play only a modest role, if any, in the developmental decrease in rapid eye movement sleep. Clonidine blocked or reduced the hyperpolarization-activated inward cation conductance, so that its effects on the firing rate of a specific population of pedunculopontine nucleus neurons could be significant. In conclusion, the alpha-2 adrenergic input to pedunculopontine nucleus neurons appears to consistently modulate the firing rate of cholinergic and non-cholinergic pedunculopontine nucleus neurons, with important effects on the regulation of sleep-wake states.
-
Aiming to gain insights into the mechanisms of neuronal differentiation, we describe the first differential expression profiles of purified homogenous neural precursors (CD133+ cells from human fetal brain) with those of differentiated neurons from human fetal brain. The purity of the two populations of cells was verified by flow cytometry and immunocytochemistry, and cells were then processed for DNA microarray analysis. ⋯ In addition, we identified, and confirmed by reverse transcription-polymerase chain reaction and in situ hybridization, significant differential expression of platelet-derived growth factor receptor-alpha and insulin-like growth factor binding protein 4, indicating these factors as potential pro-neuronal differentiation factors. In summary, by using the microarray technique to perform a comparative analysis of the genes involved in the differentiation of neural precursors, enriched from the human fetus, we have identified hitherto unknown candidate genes and related signaling pathways that might play an essential role in neuronal differentiation.
-
Comparative Study
Oxytocin receptors in the nucleus accumbens facilitate "spontaneous" maternal behavior in adult female prairie voles.
Oxytocin and the nucleus accumbens have been extensively implicated in the regulation of maternal behavior, and the processing of pup-related stimuli relevant for this behavior. Oxytocin receptor density in the nucleus accumbens is highly variable in virgin female prairie voles, as is their behavioral response to pups, ranging from neglecting and infanticidal to full maternal behavior. We hypothesized that oxytocin receptor in the nucleus accumbens facilitates the expression of "spontaneous" maternal behavior in prairie voles. ⋯ Nucleus accumbens oxytocin receptor antagonist-infused females recovered the next day and were not different from controls. Animals infused with CSF or oxytocin receptor antagonist into the caudate putamen did not differ (four/10, four/10). This is the first study to show that the nucleus accumbens is involved in the regulation of "spontaneous" maternal behavior and that oxytocin receptor in this brain region facilitates maternal responses.
-
Comparative Study
Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration.
The vulnerability of different dopaminergic cell populations to damage caused by the herbicide paraquat was assessed by stereological counts of tyrosine hydroxylase-positive and calbindin-D28k-immunoreactive neurons in A9 (substantia nigra pars compacta) and A10 (ventral tegmental area and other cell groups). In saline-treated control mice, tyrosine hydroxylase-immunoreactive neurons represented 80% and 45% of the total neuronal population in A9 and A10, respectively, and the number of calbindin-D28k-positive neurons was five times greater in A10 than A9. Sequential injections with paraquat resulted in a significant loss of dopaminergic neurons in A9. ⋯ Co-localization studies revealed that calbindin-D28k immunoreactivity overlapped with tyrosine hydroxylase labeling and that, after paraquat administration, (i) the vast majority of midbrain 4-hydroxy-2-nonenal-immunoreactive cells were dopaminergic (tyrosine hydroxylase-immunoreactive), (ii) tyrosine hydroxylase/4-hydroxy-2-nonenal-positive neurons were much more prevalent in A9 than A10, and (iii) all calbindin-D28k-containing neurons were characterized by lack of lipid peroxidation (4-hydroxy-2-nonenal immunoreactivity). Results in this paraquat model emphasize that, despite sharing a similar dopaminergic phenotype, different groups of midbrain neurons vary dramatically in their vulnerability to injury. Data also indicate that these differences are attributable, at least in part, to a varying susceptibility of dopaminergic cell populations to oxidative stress.