Neuroscience
-
Comparative Study
Maturation of firing pattern in chick vestibular nucleus neurons.
The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). ⋯ From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on depolarization to the tonic firing of spontaneous and evoked action potentials.
-
Comparative Study
Histometric changes and cell death in the thalamus after neonatal neocortical injury in the rat.
Freezing injury to the developing cortical plate results in a neocortical malformation resembling four-layered microgyria. Previous work has demonstrated that following freezing injury to the somatosensory cortex, males (but not females) have more small and fewer large cells in the medial geniculate nucleus. In the first experiment, we examined the effects of induced microgyria to the somatosensory cortex on neuronal numbers, neuronal size, and nuclear volume of three sensory nuclei: ventrobasal complex, dorsal lateral geniculate nucleus, and medial geniculate nucleus. ⋯ We found that cell death peaked within 24 h of the freezing injury and was concentrated mostly in ventrobasal complex. In addition, there was evidence of greater cell death in males at this age. Taken together, these results support the notion that males are more severely affected by early injury to the cerebral cortex than females.
-
Comparative Study
Caspase-3 cleaved spectrin colocalizes with neurofilament-immunoreactive neurons in Alzheimer's disease.
Corticocortical disconnection in Alzheimer's disease occurs by the progressive impairment and eventual loss of a small subset of pyramidal neurons in layers III and V of association areas of the neocortex. These neurons exhibit large somatic size, extensive dendritic arborization and high levels of nonphosphorylated neurofilaments of medium and high molecular weight that can be identified using a monoclonal SMI-32 antibody. It is thought that the accumulation of amyloid Abeta and neurofibrillary tangles may provoke metabolic disturbances that result in the loss of these SMI-32 immunoreactive neurons. ⋯ In the present study, we utilized an antibody that selectively recognizes the 120 kDa breakdown product of alphaIIspectrin (fodrin) generated by caspase-3 to determine whether this protease is activated in vulnerable pyramidal neurons located in layers III and V of Alzheimer's disease brains. Neurons immunoreactive for caspase-3 cleaved alphaIIspectrin were located predominantly in layers III and V of the inferior frontal and superior temporal cortices of patients with Alzheimer's disease but not age-matched controls. Pyramidal neurons immunoreactive for caspase-3 cleaved alphaIIspectrin invariably displayed SMI-32 immunoreactivity suggesting that caspase-3 activation is a pathological event that may be responsible for the loss of a subset of pyramidal neurons that comprise corticocortical projections.
-
Comparative Study
Volatile female odors activate the accessory olfactory system of male mice without physical contact.
We previously reported that male mice are more attracted to volatile odors from intact female mice than from ovariectomized female mice. In the present study, we investigated male attraction to volatile odors from soiled bedding collected from the cages of estrous or ovariectomized female mice. There was no difference in the total time spent sniffing volatile odors from estrous and ovariectomized female mice, suggesting that female mice emit volatile odors which are not excreted into bedding. ⋯ To characterize the female-specific volatile odors, we conducted habituation-dishabituation tests. Whereas sham-operated male mice discriminated between volatile odors of estrous and ovariectomized female mice, vomeronasal organ-removed male mice did not. These results suggest that male mice discriminated whether or not female mice were ovariectomized, by volatile odors via the accessory olfactory system, and that the female-specific volatile odors are involved in reproduction.
-
Comparative Study
Early infiltration of CD8+ macrophages/microglia to lesions of rat traumatic brain injury.
Local inflammatory responses play an important role in mediating secondary tissue damage in traumatic brain injury. Characterization of leukocytic subpopulations contributing to the early infiltration of the damaged tissue might aid in further understanding of lesion development and contribute to definition of cellular targets for selective immunotherapy. In a rat traumatic brain injury model, significant CD8+ cell accumulation was observed 3 days post-injury. ⋯ The morphology, time course of accumulation and distribution of CD8+ cells were similar to that of reactive ED1+ and endothelial monocyte-activating polypeptide II+ microglia/macrophages, but different from W3/13+ T cells. Further double-labeling experiments confirmed that the major cellular sources of CD8 were reactive macrophages/microglia. Both the location of these CD8+ macrophages/microglia to the border of the pannecrosis and their co-expression of endothelial monocyte-activating polypeptide II and P2X4 receptor suggest they might have a central role in lesion development and might thus be candidates for development of immunotherapeutic, anti-inflammatory strategies.