Neuroscience
-
The midbrain periaqueductal gray (PAG), and its descending projections to the rostral ventromedial medulla (RVM), provide an essential neural circuit for opioid-produced antinociception. Recent anatomical studies have reported that the projections from the PAG to the RVM are sexually dimorphic and that systemic administration of morphine significantly suppresses pain-induced activation of the PAG in male but not female rats. Given that morphine antinociception is produced in part by disinhibition of PAG output neurons, it is hypothesized that a differential activation of PAG output neurons mediates the sexually dimorphic actions of morphine. ⋯ The absolute number of PAG-RVM neurons activated by morphine was also greater in males. These data demonstrate widespread disinhibition of PAG neurons following morphine administration. The greater morphine-induced activation of PAG output neurons in male compared with female rats is consistent with the greater morphine-induced antinociception observed in males.
-
In the months following transection of adult rat peripheral nerve some sensory neurons undergo apoptosis. Two weeks after sciatic nerve transection some neurons in the L4 and L5 dorsal root ganglia begin to show immunoreactivity for nestin, a filament protein expressed by neuronal precursors and immature neurons, which is stimulated by neurotrophin-3 (NT-3) administration. The aim of this study was to examine whether NT-3 administration could be compensating for decreased production of neurotrophins or their receptors after axotomy, and to determine the effect on nestin synthesis. ⋯ Some satellite cells surrounding neurons expressed trkA and trkC mRNA and trkC immunoreactivity. NT-3 administration did not affect neurotrophin mRNA levels in the contralateral ganglia, but decreased the expression of trkA mRNA and increased the expression of trkB mRNA and p75NTR mRNA and protein. These data suggest that systemically administered NT-3 may counteract the decrease, or even increase, neurotrophin responsiveness in both ipsi- and contralateral ganglia after nerve injury.
-
Development of cerebral edema (intracellular and/or extracellular water accumulation) following traumatic brain injury contributes to mortality and morbidity that accompanies brain injury. Chronic intermittent vagus nerve stimulation (VNS) initiated at either 2 h or 24 h (VNS: 30 s train of 0.5 mA, 20 Hz, biphasic pulses every 30 min) following traumatic brain injury enhances recovery of motor and cognitive function in rats in the weeks following brain injury; however, the mechanisms of facilitated recovery are unknown. The present study examines the effects of VNS on development of acute cerebral edema following unilateral fluid percussion brain injury (FPI) in rats, concomitant with assessment of their behavioral recovery. ⋯ Most interestingly, results of this study showed that development of edema within the cerebral cortex ipsilateral to FPI was significantly attenuated at 48 h in FPI rats receiving VNS compared with non-VNS FPI rats (P<0.04). Finally, a correlation analysis between beam walk performance and cerebral edema following FPI revealed a significant inverse correlation between behavior performance and cerebral edema. Together, these results suggest that VNS facilitation of motor recovery following experimental brain injury in rats is associated with VNS-mediated attenuation of cerebral edema.
-
Several lines of evidence suggest that extracellular ATP plays a role in pain signaling through the activation of ionotropic P2X-receptors, especially homomeric P2X3- and heteromeric P2X2/3-receptors on capsaicin-sensitive and -insensitive primary afferent neurons, respectively, at peripheral and spinal sites. We investigated the mechanisms of the induction and maintenance of mechanical allodynia produced by a single intrathecal (i.t.) administration of ATP in rats. We found that i.t. administration of ATP and the P2X-receptor agonist alpha,beta-methylene-ATP produced tactile allodynia which lasted more than 1 week. ⋯ ATP administration caused spinal microglial activation within 1 day, and astrocytic activation which peaked at 1-3 days after ATP administration. Furthermore, minocycline, a microglial inhibitor, attenuated the induction but not the early and late phases of maintenance, while fluorocitrate, a glial metabolic inhibitor, attenuated the induction and the early phase but not the late phase of maintenance. Taken together, these results suggest that the activation of P2X-receptors, most likely spinal P2X2/3-receptors on capsaicin-insensitive primary afferent neurons, triggers the induction of long-lasting allodynia through NMDA receptors, and the induction and early maintenance phase, but not the late phase, is mediated through the functions of spinal glial cells.
-
Nervous system formation integrates control of cellular proliferation and differentiation and is mediated by multipotent neural progenitor cells that become progressively restricted in their developmental potential before they give rise to differentiated neurons and glial cells. Evidence from different experimental systems suggests that Geminin is a candidate molecule linking proliferation and differentiation during nervous system development. We show here that Geminin and its binding partner Cdt1 are expressed abundantly by neural progenitor cells during early mouse neurogenesis. ⋯ Bromo-deoxy-uridine (BrdU) incorporation experiments reveal a cell cycle specific expression in neural progenitor cells, with Geminin being present from S to M phase, while Cdt1 expression characterizes progenitor cells in G1 phase. Furthermore, in vitro differentiation of adult neurosphere cultures shows downregulation of Geminin/Cdt1 in the differentiated state, in line with our data showing that Geminin is present in neural progenitor cells of the CNS during mouse embryogenesis and adulthood and becomes downregulated upon cell fate specification and differentiation. This suggests a role for Geminin in the formation and maintenance of the neural progenitor cells.