Neuroscience
-
Nicotine, the major psychoactive ingredient in tobacco interacting with nicotinic acetylcholine receptors (nAChR), is believed to have neuroprotective and neurotoxic effects on the developing brain. Neurotoxicity has been attributed to activation of homomeric alpha7 nAChRs, neuroprotection to heteromeric alpha4beta2 nAChRs. Thus, developmental nicotine could have opposite effects in different brain regions, depending on nAChR subtype expression. ⋯ CNN increased heteromeric nAChR binding in hippocampus but not cerebellum and significantly decreased neuronal soma size and increased packing density in hippocampal principal cells but not in cerebellum. CNN did not increase the number of dying cells in any area, but significantly fewer TUNEL-labeled cells were found in CA3 strata oriens and radiatum and cerebellar granule layer. Thus, the hippocampus seems to be more sensitive than the cerebellum to CNN which could result from different nAChR subtype expression and might explain long-lasting altered cognitive functions correlated with gestational nicotine exposure due to changes in hippocampal cell morphology.
-
Growing evidence supports a role for the immune system in the induction and maintenance of chronic pain. ATP is a key neurotransmitter in this process. Recent studies demonstrate that the glial ATP receptor, P2X7, contributes to the modulation of pathological pain. ⋯ Thus, ATP, acting through the P2X7 receptor, exerts a wide-ranging influence on spinal neuronal activity following a chronic injury. Antagonism of the P2X7 receptor can in turn modulate central sensitization and produce antinociception in animal models of pathological pain. These effects are likely mediated through immuno-neural interactions that affect the release of endogenous cytokines.