Neuroscience
-
A high soy diet reduces programmed cell death and enhances bcl-xL expression in experimental stroke.
Soy phytoestrogens have been proposed as an alternative to estrogen replacement therapy and have demonstrated potential neuroprotective effects in the brain. We have shown that a high soy diet significantly reduces infarct size following permanent middle cerebral artery occlusion (MCAO). Here, we tested the hypothesis that a high soy diet would attenuate programmed cell death after stroke. ⋯ Immunohistochemistry revealed increased neuronal expression of bcl-2 and bcl-x(L) in the ischemic cortex of both IFP and SP rats following tMCAO. These results suggest that a high soy diet decreases both caspase-dependent and caspase-independent programmed cell death following tMCAO. Further, a high soy diet enhances expression of the cell survival factor bcl-x(L) following tMCAO, contributing to the neuroprotective effects of soy in the ischemic cortex.
-
Dynorphins are endogenous opioid peptide products of the prodynorphin gene. An extensive literature suggests that dynorphins have deleterious effects on CNS injury outcome. We thus examined whether a deficiency of dynorphin would protect against tissue damage after spinal cord injury (SCI), and if individual cell types would be specifically affected. ⋯ Our results indicate that dynorphin peptides affect the extent of post-injury caspase-3 activation, and that glia are especially sensitive to these effects. By promoting caspase-3 activation, dynorphin peptides likely increase the probability of glial apoptosis after SCI. While normally beneficial, our findings suggest that prodynorphin or its peptide products become maladaptive following SCI and contribute to secondary injury.
-
The expression pattern of the pannexin2 protein (Px2) in healthy and ischemized brains of adult rats was investigated. A polyclonal antibody for rat Px2 was generated in chicken and purified for affinity. This antibody was used to study by Western blot, Enzyme-Linked Immunosorbent Assay, and immunohistochemistry, the expression pattern of Px2 in healthy brain of adult rats and in the hippocampus of rats submitted to bilateral clamping of carotid arteries for 20 min, followed by different times of reperfusion (I/R) (8 h, 24 h, 48 h, 72 h, 14 days and 30 days). ⋯ These results suggested the expression of Px2 in the astrocytes may be induced either from injured neurons or by biochemical pathways internal to the astrocyte itself. In conclusion, our results showed the transient expression of Px2 in astrocytes of reactive gliosis occurring in the hippocampus following I/R injury. We hypothesize that Px2 expression in astrocytes following an ischemic insult is principally involved in the formation of hemichannels for the release of signaling molecules devoted to influence the cellular metabolism and the redox status of the surrounding environment.