Neuroscience
-
Midbrain dopamine neurons in the ventral tegmental area, substantia nigra and retrorubral field play key roles in reward processing, learning and memory, and movement. Within these midbrain regions and admixed with the dopamine neurons, are also substantial populations of GABAergic neurons that regulate dopamine neuron activity and have projection targets similar to those of dopamine neurons. Additionally, there is a small group of putative glutamatergic neurons within the ventral tegmental area whose function remains unclear. ⋯ Vesicular glutamate transporter 2 mRNA-positive neurons were present in the ventral tegmental area, but not substantia nigra or retrorubral field. They were mainly confined to the rostro-medial region of the ventral tegmental area, and represented approximately 2-3% of the total neurons counted ( approximately 1600 cells). These results demonstrate that GABAergic and glutamatergic neurons represent large proportions of the neurons in what are traditionally considered as dopamine nuclei and that there are considerable heterogeneities in the proportions of cell types in the different dopaminergic midbrain regions.
-
Recently, we have reported that melittin, a major toxic peptide of the whole bee venom, plays a central role in production of local inflammation, nociception and hyperalgesia following the experimental honeybee's sting. However, the exact peripheral mechanisms underlying melittin-induced multiple pain-related behaviors are still less characterized. In the present study, we sought to investigate the potential roles of peripheral mitogen-activated protein kinases (MAPKs) in melittin-induced nociception and hyperalgesia by pre- and post-administration of three MAPK inhibitors, namely U0126 (1 mug, 10 mug) for extracellular signal-regulated kinase (ERK), SP600125 (10 mug, 100 mug) for c-Jun N-terminal kinase (JNK) and SB239063 (10 mug, 100 mug) for p38 MAPK, into the local inflamed area of one hind paw of rats. ⋯ Furthermore, local administration of the three compounds in naïve animals, respectively, did not change the basal pain sensitivity to either thermal or mechanical stimuli, suggesting lack of peripherally functional roles of the three MAPK subfamily members in normal pain sensitivity under the physiological state. Taken together, we conclude that activation of peripheral MAPKs, including ERK, JNK and p38, might contribute to the induction and maintenance of persistent ongoing pain and primary heat hyperalgesia in the melittin test. However, they are not likely to be involved in the processing of melittin-induced primary mechanical hyperalgesia, implicating a mechanistic separation between mechanical and thermal hyperalgesia in the periphery.
-
We have expressed A-FOS, an inhibitor of activator protein-1 (AP-1) DNA binding, in adult mouse striatal neurons. We observed normal behavior including locomotion and exploratory activities. Following a single injection of cocaine, locomotion increased similarly in both the A-FOS expressing and littermate controls. ⋯ Fifty-six genes are down-regulated while 28 genes are up-regulated including previously identified candidates for addiction including brain-derived neurotrophic factor and period homolog 1. Using a random sample of identified genes, quantitative PCR was used to verify the microarray studies. The chromosomal location of these 84 genes was compared with human genome scans of addiction to identify potential genes in humans that are involved in addiction.
-
Numerous studies have documented the consequences of exposure to anesthesia in models of term and post-term infants, evaluating the incidence of cell loss, physiological alterations and cognitive dysfunction. However, surprisingly few studies have investigated the effect of anesthetic exposure on outcomes in newborn rodents, the developmental equivalent of premature human infants. This is critical given that one out of every eight babies born in the United States is premature, with an increased prevalence of surgical procedures required in these individuals. ⋯ While both forms of anesthesia led to significant decrements in cognitive abilities, along with a significant reduction in volume and neuron number in the hippocampus in adulthood, the decrements were significantly greater in males than in females. Interestingly, the deleterious effects of anesthesia were manifest on developmental measures including surface righting and forelimb grasp, but were not evident on basic physiological parameters including body weight or suckling. These findings point to the hazardous effects of exposure to anesthesia on the developing CNS and the particular sensitivity of males to deficits.