Neuroscience
-
Current cognitive models suggest that the processing of dynamic facial attributes, including social signals such as gaze direction and facial expression, involves the superior temporal sulcus, whereas the processing of invariant facial structure such as the individuals' identity involves the fusiform face area. Where facial attractiveness, a social signal that may emerge from invariant facial structure, is processed within this dual-route model of face perception is uncertain. Here, we present two studies. ⋯ Second, we performed a functional magnetic resonance imaging study in healthy subjects that included an implicit and explicit processing of facial attractiveness. We found increased neural activity when explicitly judging facial attractiveness within a number of cortical regions including the fusiform face area, but not the superior temporal sulcus, indicating a potential contribution of the fusiform face area to this judgment. Thus, converging neuropsychological and neuroimaging evidence points to a critical role of the inferior occipitotemporal cortex in the processing of facial attractiveness.
-
Cytidine-5-diphosphocholine (CDP-choline or citicholine) is an essential molecule that is required for biosynthesis of cell membranes. In adult humans it is used as a memory-enhancing drug for treatment of age-related dementia and cerebrovascular conditions. However the effect of CDP-choline on perinatal brain is not known. ⋯ However significant increases in neurite length, branch points and total area occupied by the neurons were observed. We conclude that exogenous supplementation of CDP-choline during development causes stable changes in neuronal morphology. Significant increase in dendritic growth and branching of pyramidal neurons from the somatosensory cortex resulted in enlarging the surface area occupied by the neurons which we speculate will augment processing of sensory information.
-
Lipoprotein lipase (LPL), which plays an essential role in plasma lipoprotein metabolism and transportation, appears to be a risk factor for ischemic vascular diseases. Several studies have recently reported the presence of relationship between HindIII, PvuII, Ser447Ter (C-->G) polymorphisms of LPL and ischemic vascular diseases. ⋯ Our study suggests that PvuII and Ser447Ter polymorphisms are associated with lipid profile and CI.
-
Tumor necrosis factor alpha (TNFalpha), a pro-inflammatory cytokine, enhances the development of pain and hyperalgesia, although the molecular mechanisms are not well understood. This study evaluated the hypothesis that TNFalpha increases the sensitivity of rat trigeminal neurons to capsaicin via two different mechanisms triggered by either brief or sustained exposure to the cytokine. A brief (5 min) application of TNFalpha significantly sensitized capsaicin-evoked accumulation of intracellular calcium ([Ca2+]i) (226.4+/-37.7 nM vs. 167.5+/-31.3 nM) and increased capsaicin-evoked nocifensive behavior (78.3+/-9.7 vs. 30.9+/-3.6 s) as compared with vehicle pretreatment (P<0.01 for both). ⋯ Demonstration of colocalization of TNFalpha receptor subtypes I and II with TRPV1 in almost all (>90%) TRPV1 expressing neurons provides evidence consistent with a direct interaction on the same subpopulation of sensory neurons. In summary, our data demonstrate that TNFalpha directly enhances the sensitivity of rat trigeminal neurons to capsaicin via both rapid, non-genomic mechanisms as well as sustained genomic regulation in TRPV1 expression. Thus, increased sensitization and up-regulation of TRPV1 constitutes a potential mechanism by which TNFalpha mediates inflammatory hyperalgesia and pain.