Neuroscience
-
Impaired cognitive functions are well-described in the aging process. GABA(B) antagonists can facilitate learning and memory in young subjects, but these agents have not been well-characterized in aging. ⋯ There was no evidence that this improved learning was due to enhanced olfactory detection abilities produced by the drug. These results highlight the potential of targeting GABA(B) receptors to ameliorate age-related cognitive deficits and demonstrate the utility of olfactory discrimination learning as a preclinical model for testing novel therapies to improve cognitive functions in aging.
-
Glutamatergic N-methyl-d-aspartate NMDA receptors (NMDAR) are considered to play a key role in ischemia-induced damage. Long-term (hours) changes in their expression upon ischemia have been shown. Here we report short-term changes in the mRNA levels of the major hippocampal NMDAR subunits (NR1, NR2A and NR2B), as well as c-fos, in an ex vivo ischemia model using hippocampal slices. ⋯ Since OGD-induced damage has been reported to be a consequence of the increase in OGD-related glutamate release, we also analyzed NMDAR mRNA levels following increased glutamate levels in hippocampal sections in which no significant effects on NMDAR subunit mRNA levels were detected. Furthermore, we describe that the presence of MK-801 (a selective NMDAR antagonist), CNQX (a selective AMPA/kainate receptor antagonist) or their combined action in the incubation solution is able to induce a significant decrease in NMDAR expression but in these conditions the OGD does not induce further decreases in mRNA levels. We suggest that the mechanisms triggered during OGD to downregulate mRNA levels of NMDAR subunits could be the same than those induced by glutamate receptor antagonists.
-
The cellular prion protein (PrP(C)) is a neuronal-anchored glycoprotein that has been associated with various functions in the CNS such as synaptic plasticity, cognitive processes and neuroprotection. Here we investigated age-related behavioral and neurochemical alterations in wild-type (Prnp(+/+)), PrP(C) knockout (Prnp(0/0)) and the PrP(C) overexpressing Tg-20 mice. Three- or 11 month-old animals were submitted to a battery of behavioral tasks including open field, activity cages, elevated plus-maze, social recognition and inhibitory avoidance tasks. ⋯ The i.c.v. infusion of STI1 peptide 230-245, which includes the PrP(C) binding site, improved the age-related social recognition deficits in Prnp(+/+). In comparison with the two other age-matched genotypes, the 11 month-old Tg-20 mice also exhibited reduced activity of seric acetylcholinesterase, increased expression of the protein synaptophysin and decreased caspase-3 positive-cells in the hippocampus. The present findings obtained with genetic and pharmacological approaches provide convincing evidence that PrP(C) exerts a critical role in the age-related behavioral deficits in mice probably through adaptive mechanisms including apoptotic pathways and synaptic plasticity.
-
Triple transgenic (3xTg-AD) mice harboring the presenilin 1, amyloid precursor protein, and tau transgenes (Oddo et al., 2003b) display prominent levels of amyloid-beta (Abeta) immunoreactivity in forebrain regions. The Abeta immunoreactivity is first seen intracellularly in neurons and later as extracellular plaque deposits. The present study examined Abeta immunoreactivity that occurs in layer III of the granular division of retrosplenial cortex (RSg). ⋯ In animals sustaining early damage to the medial septal nucleus (prior to the advent of Abeta immunoreactivity), the band of Abeta in layer III of RSg does not develop; the corresponding band of cholinergic markers also is eliminated. In older animals (after the appearance of the Abeta immunoreactivity) damage to cholinergic afferents by electrolytic lesions, immunotoxin lesions, or cutting the cingulate bundle, result in a rapid loss of the cholinergic markers and a slower reduction of Abeta immunoreactivity. These results suggest that the septal cholinergic axonal projections transport Abeta or amyloid precursor protein (APP) to layer III of RSg.
-
Mutations in the connexin26 gene (GJB2) are the most common genetic cause of congenital bilateral non-syndromic sensorineural hearing loss. Transgenic mice were established carrying human Cx26 with the R75W mutation that was identified in a deaf family with autosomal dominant negative inheritance [Kudo T et al. (2003) Hum Mol Genet 12:995-1004]. A dominant-negative Gjb2 R75W transgenic mouse model shows incomplete development of the cochlear supporting cells, resulting in profound deafness from birth [Inoshita A et al. (2008) Neuroscience 156:1039-1047]. ⋯ Prestin, the voltage-dependent motor protein, was observed by immunohistochemistry in the OHC basolateral membranes of both transgenic and non-transgenic mice. No significant differences in electromotility of isolated OHCs during development was observed between transgenic and control mice. The present study indicates that normal development of the supporting cells is indispensable for proper cellular function of the OHC.