Neuroscience
-
Mutations in the connexin26 gene (GJB2) are the most common genetic cause of congenital bilateral non-syndromic sensorineural hearing loss. Transgenic mice were established carrying human Cx26 with the R75W mutation that was identified in a deaf family with autosomal dominant negative inheritance [Kudo T et al. (2003) Hum Mol Genet 12:995-1004]. A dominant-negative Gjb2 R75W transgenic mouse model shows incomplete development of the cochlear supporting cells, resulting in profound deafness from birth [Inoshita A et al. (2008) Neuroscience 156:1039-1047]. ⋯ Prestin, the voltage-dependent motor protein, was observed by immunohistochemistry in the OHC basolateral membranes of both transgenic and non-transgenic mice. No significant differences in electromotility of isolated OHCs during development was observed between transgenic and control mice. The present study indicates that normal development of the supporting cells is indispensable for proper cellular function of the OHC.
-
Glutamine plays multiple roles in the CNS, including metabolic functions and production of the neurotransmitters glutamate and GABA. It has been proposed to be taken up into neurons via a variety of membrane transport systems, including system A, which is a sodium-dependent electrogenic amino acid transporter system. In this study, we investigate glutamine transport by application of amino acids to individual principal neurons of the medial nucleus of the trapezoid body (MNTB) in acutely isolated rat brain slices. ⋯ Additionally, we examined the expression of different system A transporter isoforms using immunocytochemical staining with antibodies raised against system A transporter 1 and 2 (SAT1 and SAT2). Our results indicate that both isoforms are expressed in MNTB principal neurons, and demonstrate that functional system A transporters are present in the plasma membrane of neurons. Since system A transport is highly regulated by a number of cellular signaling mechanisms and glutamine then goes on to activate other pathways, the study of these transporters in situ gives an indication of the mechanisms of neuronal glutamine supply as well as points of regulation of neurotransmitter production, cellular signaling and metabolism in the native neuronal environment.
-
Pertussis toxin (PTX) treatment results in ADP-ribosylation of Gi-protein and thus in disruption of mu-opioid receptor signal transduction and loss of the antinociceptive effect of morphine. We have previously demonstrated that pretreatment with ultra-low dose naloxone preserves the antinociceptive effect of morphine in PTX-treated rats. The present study further examined the effect of ultra-low dose naloxone on mu-opioid receptor signaling in PTX-treated rats and the underlying mechanism. ⋯ In addition to the anti-neuroinflammatory effect and glutamate transporter modulation previously observed in PTX-treated rats, the re-establishment of mu-opioid receptor Gi/Go-protein coupling is involved in the restoration of the antinociceptive effect of morphine by ultra-low dose naloxone pretreatment by normalizing the balance between the excitatory and inhibitory signaling pathways. These results show that ultra-low dose naloxone preserves the antinociceptive effect of morphine, suppresses spinal neuroinflammation, and reduces PTX-elevated excitatory Gs-coupled opioid receptors in PTX-treated rats. We suggest that ultra-low dose naloxone might be clinically valuable in pain management.
-
Isoflurane preconditioning improved short-term neurological outcome after focal brain ischemia in adult rats. It is not known whether desflurane induces a delayed phase of preconditioning in the brain and whether isoflurane preconditioning-induced neuroprotection is long-lasting. Two months-old Sprague-Dawley male rats were exposed to or were not exposed to isoflurane or desflurane for 30 min and then subjected to a 90 min middle cerebral arterial occlusion (MCAO) at 24 h after the anesthetic exposure. ⋯ We conclude that isoflurane preconditioning improves short-term and long-term neurological outcome and reduces delayed cell death after transient focal brain ischemia in adult rats. Bcl-2 may be involved in the isoflurane preconditioning effect. Desflurane pretreatment did not induce a delayed phase of neuroprotection.
-
The globus pallidus (GP) plays an important role in basal ganglia circuitry. In contrast to the well-characterized actions of dopamine on striatal neurons, the functional role of the dopamine innervation of GP is still not clearly determined. The present study aimed to investigate the effects of intrapallidal injection of 6-hydroxydopamine (6-OHDA) on rotational behavior induced by apomorphine, on the loss of dopamine cell bodies in the substantia nigra pars compacta (SNc) and fibers in the GP and striatum and on in vivo extracellularly-recorded GP neurons in the rat. ⋯ Electrophysiological recordings show that 6-OHDA injection in GP induced a significant decrease of the firing rate of GP neurons (16.02+/-1.11 versus 24.14+/-1.58 spikes/sec in control animals and 22.83+/-1.28 in sham animals, one-way ANOVA, P<0.0001) without any change in the firing pattern (chi(2)=1.03, df=4, P=0.90). Our results support the premise of the existence of collaterals of SNc dopaminergic axons projecting to the striatum and GP and that dopamine plays a role in the modulation of the firing rate but not the firing pattern of GP neurons. Our data provide important insights into the functional role of the SNc-GP dopaminergic pathway suggesting that dopamine depletion in GP may participate in the development of motor disabilities.