Neuroscience
-
There is evidence of structural and functional deterioration in the brain, including the prefrontal cortex (PFC) and hippocampus, during the normal aging process in animals and humans. Extracellular matrix-associated glycoproteins, such as chondroitin sulfate proteoglycans (CSPGs), are involved in not only maintaining the structures and functions of adult neurons, but also regulating the proliferation, migration, and neurite outgrowth of neural stem cells in the brain. On the other hand, a herbal medicine, yokukansan (YKS), is used in a variety of clinical situations for treating symptoms associated with age-related neurodegenerative disorders such as Alzheimer's disease, but its pharmacological properties have not been fully understood. ⋯ Aged rats also showed a decreased number of BrdU-labeled cells in the PFC and hippocampus, and these decreases were improved by YKS treatment, which also increased the numbers in young rats. These results suggest that aging influences the microenvironment for adult and immature neurons in the brain, which may affect the proliferation and migration of neural stem/progenitor cells, and YKS has pharmacological potency for these age-related events. These findings help to understand the physiology and pathology of the aged brain and provide an anti-aging strategy for the brain.
-
Glutamine plays multiple roles in the CNS, including metabolic functions and production of the neurotransmitters glutamate and GABA. It has been proposed to be taken up into neurons via a variety of membrane transport systems, including system A, which is a sodium-dependent electrogenic amino acid transporter system. In this study, we investigate glutamine transport by application of amino acids to individual principal neurons of the medial nucleus of the trapezoid body (MNTB) in acutely isolated rat brain slices. ⋯ Additionally, we examined the expression of different system A transporter isoforms using immunocytochemical staining with antibodies raised against system A transporter 1 and 2 (SAT1 and SAT2). Our results indicate that both isoforms are expressed in MNTB principal neurons, and demonstrate that functional system A transporters are present in the plasma membrane of neurons. Since system A transport is highly regulated by a number of cellular signaling mechanisms and glutamine then goes on to activate other pathways, the study of these transporters in situ gives an indication of the mechanisms of neuronal glutamine supply as well as points of regulation of neurotransmitter production, cellular signaling and metabolism in the native neuronal environment.
-
Following CNS injury there is a period of vulnerability when cells will not easily tolerate a secondary insult. However recent studies have shown that following traumatic brain injury (TBI), as well as hypoxic-ischemic injuries, the CNS may experience a period of protection termed "preconditioning." While there is literature characterizing the properties of vulnerability and preconditioning in the adult rodent, there is an absence of comparable literature in the developing rat. To determine if there is a window of vulnerability in the developing rat, post-natal day 19 animals were subjected to a severe lateral fluid percussion injury followed by pilocarpine (Pc)-induced status epilepticus at 1, 6 or 24 h post TBI. ⋯ Instead of producing a state of hippocampal vulnerability to activation, TBI produced a state of neuroprotection. However, in a second group of animals evaluated 20 weeks post injury, double-injured animals were statistically indistinguishable in terms of seizure threshold, mossy fiber sprouting and cell survival when compared to those treated with Pc alone. TBI, therefore, produced a temporary state of neuroprotection from seizure-induced cell death in the developing rat; however, this ultimately conferred no long-term protection from altered hippocampal circuit rearrangements, enhanced excitability or later convulsive seizures.
-
Pertussis toxin (PTX) treatment results in ADP-ribosylation of Gi-protein and thus in disruption of mu-opioid receptor signal transduction and loss of the antinociceptive effect of morphine. We have previously demonstrated that pretreatment with ultra-low dose naloxone preserves the antinociceptive effect of morphine in PTX-treated rats. The present study further examined the effect of ultra-low dose naloxone on mu-opioid receptor signaling in PTX-treated rats and the underlying mechanism. ⋯ In addition to the anti-neuroinflammatory effect and glutamate transporter modulation previously observed in PTX-treated rats, the re-establishment of mu-opioid receptor Gi/Go-protein coupling is involved in the restoration of the antinociceptive effect of morphine by ultra-low dose naloxone pretreatment by normalizing the balance between the excitatory and inhibitory signaling pathways. These results show that ultra-low dose naloxone preserves the antinociceptive effect of morphine, suppresses spinal neuroinflammation, and reduces PTX-elevated excitatory Gs-coupled opioid receptors in PTX-treated rats. We suggest that ultra-low dose naloxone might be clinically valuable in pain management.
-
The classical GABA/glycine hyperpolarizing inhibition is not observed in the immature spinal cord. GABA(A) and glycine receptors are anions channels and the efficacy of inhibitory transmission in the spinal cord is largely determined by the gradient between intracellular and extracellular chloride concentrations. The concentration of intracellular chloride in neurons is mainly regulated by two cation-chloride cotransporters, the potassium-chloride cotransporter 2 (KCC2) and the sodium-potassium-chloride co-transporter 1 (NKCC1). ⋯ Our results suggest that the negative shift of E(IPSP) from above to below the resting membrane potential occurs during the first postnatal week when the expression of KCC2 increases significantly and the expression of NKCC1 decreases. KCC2 immunolabeling surrounded motoneurons, presumably in the plasma membrane and NKCC1 immunolabeling appeared outside this KCC2-labeled fine strip. Taken together, the present results indicate that maturation of chloride homeostasis is not completed at birth in the rat and that the upregulation of KCC2 plays a key role in the shift from depolarizing to hyperpolarizing IPSPs.