Neuroscience
-
Cadherin23 has been proposed to form the upper part of the tip link, an interstereocilial link believed to control opening of transducer channels of sensory hair cells. However, we detect tip link-like links in mouse mutants with null alleles of Cdh23, suggesting the presence of other components that permit formation of a link between the tip of one stereocilium and the side of the adjacent taller stereocilium.
-
The somatotopic map of the first nociceptive component in the primary somatosensory cortex (S1) is still unclear. In this study, a CO(2) laser was applied to the tail of the rat to induce nociception without the interference from large myelinated (A(beta)) fibers. Thus, only noxious fibers could be activated. ⋯ We found that whether light touch or laser-induced nociception was applied to the tail of the rat, the responsive topography in S1 was consistent. Discrimination of these two modalities was achieved vertically in the same column; the deeper layer represented the nociceptive response while the superficial layer encoded the response to light touch. This is quite different from that of a primate brain.
-
During peripheral tissue inflammation, inflammatory processes in the CNS can be initiated by blood-borne pro-inflammatory mediators. The choroid plexus, the site of cerebrospinal fluid (CSF) production, is a highly specialized interface between the vascular system and CNS, and thus, this structure may be an important element in communication between the vascular compartment and the CNS during peripheral tissue inflammation. We investigated the potential participation of the choroid plexus in this process during peripheral tissue inflammation by examining expression of the small inducible cytokine A2 (SCYA2) gene which codes for monocyte chemoattractant protein-1 (MCP-1). ⋯ Given that we also detected increased levels of MCP-1 protein by ELISA, we sought to identify potential downstream targets of MCP-1 and observed altered expression levels of mRNAs encoding tight junction proteins TJP2 and claudin 5. Finally, we detected a substantial up-regulation of the transcript encoding endothelial leukocyte adhesion molecule 1 (E-selectin), a molecule which could participate in leukocyte recruitment to the choroid plexus along with MCP-1. Together, these results suggest that profound changes occur in the choroid plexus during peripheral tissue inflammation, likely initiated by blood-borne inflammatory mediators, which may modify events in CNS.
-
Experiential therapies, such as enriched environment (EE), have been shown to influence the neurodegenerative processes that underlie Parkinson's disease. We have previously demonstrated that EE promotes functional improvement in dopamine-depleted rats. Here we compare the influence of exposure to EE prior to versus after dopamine depletion in the 6-hydroxydopamine rat model of Parkinson's disease. ⋯ Exposure to pre-lesion EE in particular promoted structural plasticity as indicated by increased expression of the main cytoskeletal component microtubule associated protein-2 in the lesion dorsal striatum. Continuous EE showed absence of rotational bias suggesting attenuated dopamine loss. These data indicate that enriched lifestyle before the onset of motor symptoms and rehabilitation programs after diagnosis might be beneficial in patients with Parkinson's disease.
-
The maturation of the hippocampus is impacted by a multitude of factors, including the regulation of intracellular calcium levels. Depolarizing actions of Gamma-Aminobutyric Acid (GABA) can profoundly alter intracellular calcium in immature hippocampal neurons via influx through voltage-gated calcium channels. We here report fundamental sex differences in properties of depolarizing GABA responses and in resting intracellular calcium in neonatal cultured hippocampal neurons. ⋯ We postulate that local estradiol synthesis in cultured female hippocampal neurons affects the kinetics of either the GABA(A) receptor or voltage sensitive calcium channels. These data highlight the fact that immature hippocampal neurons exhibit fundamentally different physiological properties in males versus females. Elucidating how and where immature male and female neurons differ is essential for a complete understanding of normal rodent brain development.