Neuroscience
-
Interneurons expressing the calcium-binding protein parvalbumin (PV) are a critical component of the inhibitory circuitry of the basolateral nuclear complex (BLC) of the mammalian amygdala. These neurons form interneuronal networks interconnected by chemical and electrical synapses, and provide a strong perisomatic inhibition of local pyramidal projection neurons. Immunohistochemical studies in rodents have shown that most parvalbumin-positive (PV+) cells are GABAergic interneurons that co-express the calcium-binding protein calbindin (CB), but exhibit no overlap with interneuronal subpopulations containing the calcium-binding protein calretinin (CR) or neuropeptides. ⋯ There was no colocalization of PV with the neuropeptides somatostatin or cholecystokinin, and virtually no colocalization with CR. These data indicate that the neurochemical characteristics of the PV+ interneuronal subpopulation in the monkey BLC are fairly similar to those seen in the rat, but there is far less colocalization of PV and CB in the monkey. These findings suggest that PV+ neurons are a discrete interneuronal subpopulation in the monkey BLC and undoubtedly play a unique functional role in the inhibitory circuitry of this brain region.
-
Socially housed monkeys have been used as a model to study human diseases. The present study examined behavioral, physiological and neurochemical measures as predictors of social rank in 16 experimentally naïve, individually housed female cynomolgus monkeys (Macaca fascicularis). The two behavioral measures examined were novel object reactivity (NOR), as determined by latency to touch an opaque acrylic box placed in the home cage, and locomotor activity assessed in a novel open-field apparatus. ⋯ The two measures that correlated with eventual social rank were CSF 5-HIAA concentrations, which were significantly higher in the animals who eventually became subordinate, and latency to touch the novel object, which was significantly lower in eventual subordinate monkeys. Measures of 5-HT function did not change as a consequence of social rank. These data suggest that levels of central 5-HIAA and measures of novel object reactivity may be trait markers that influence eventual social rank in female macaques.
-
Intermittent hypoxia (IH) is a major pathological factor in the development of neural deficits associated with sleep-disordered breathing. Here we demonstrate that IH lasting 2 or 30 days, but not sustained hypoxia (SH) of the same duration, was accompanied by several posttranslational modifications of the large subunit of RNA polymerase II, Rpb1, including hydroxylation of proline 1465, phosphorylation of serine 5 residues within the C-terminal domain, and nondegradative ubiquitylation. ⋯ Furthermore, by using the pheochromocytoma-derived PC12 cell line, we showed that, under in vitro IH conditions, induction of Rpb1 hydroxylation, phosphorylation, and ubiquitylation required that the von Hippel-Lindau protein be present. We hypothesize that the observed modifications of Rpb1 participate in regulating the expression of genes involved in mediating cognitive deficits evoked by chronic IH.
-
Orexin (hypocretin) peptides are known to depolarize rat thalamic paraventricular nucleus (PVT) neurons by suppression of one or more undefined potassium conductances. Here, we investigated a contribution of TWIK-related acid-sensitive K(+) (TASK) channels to the resting membrane potential and orexin-induced depolarization of PVT neurons, using patch clamp recording techniques in brain slice preparations. Upon exposure to an acidic (pH 6.3) extracellular solution, PVT neurons displayed membrane depolarization. ⋯ Although responsiveness to orexins was preserved under each of the above conditions, the amplitude of the orexin B (0.5 microM)-induced inward current was depressed in the acidic solution and in the presence of anandamide, remained largely unchanged in the alkaline solution, and was enhanced by isoflurane when compared with that in normal artificial cerebrospinal solution. We conclude that pH-sensitive potassium channels, TASK-1 and TASK-3 channels, contribute substantially to the resting membrane conductance(s) and excitability in PVT neurons. The observations that orexin-induced currents were affected by putative TASK-specific drugs in a manner predictable from their effects on TASK channels also suggest that the orexin-induced excitation in PVT neurons is mediated by closure of TASK channels.
-
The current study aimed at investigating the processing of prosodic hierarchical boundaries in Mandarin Chinese sentences using electroencephalography, mainly focused on the following questions: (1) whether prosodic boundaries at different levels could evoke the closure positive shift reflecting prosodic boundary perception; (2) what were the differences between them at latency, amplitude and topography; (3) whether this positive component was modified by the variations of acoustic cues (e.g. pause). Main results were: (1) As the previous studies indicated, intonational phrases elicited the closure positive shift as a marker of online speech structuring; (2) phonological phrases evoked the same positive effect with shorter onset latency and somewhat lower amplitude; (3) when the pauses in the vicinity of prosodic boundaries were entirely removed, the original latency difference between the two conditions disappeared, which clearly demonstrated the influence of pause on prosodic boundary processing; (4) prosodic word boundaries only induced amplitude variation waving around the baseline, which was more positive compared with the one elicited by syllable boundaries. The present results indicated that listeners were very sensitive to both intonational phrase boundaries and phonological phrase boundaries.