Neuroscience
-
Numb is an evolutionarily conserved protein that controls the differentiation of neuronal progenitor cells by unknown mechanisms. Here we report that the neural cells expressing Numb isoforms with short phosphotyrosine-binding (SPTB) domain undergo extensive neurite outgrowth, an effect that can be blocked by voltage-gated Ca2+ channel (VGCC) inhibitor or by Ca2+ chelator. In contrast, tyrosine kinase inhibitor, genistein, and selective receptor tyrosine kinase (TrkA) inhibitor, K252alpha did not affect SPTB Numb-mediated neurite outgrowth. ⋯ Cells expressing SPTB Numbs exhibit increased whole-cell Ca2+ current densities (ICa) which can be prevented by preincubation of either nifedipine or PD98095. Cells expressing LPTB Numbs expressed little ICa (density) and were not able to grow neurites. Our results indicate that Ca2+ influx through VGCC may be required for SPTB Numb-mediated neurite outgrowth, suggesting that Numb promotes neuronal differentiation by a mechanism involving PTB domain-specific regulation of Ca2+ influx and MAP kinase activation.
-
Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. ⋯ Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli.
-
Despite increasingly widespread use of recombinant adeno-associated virus (AAV) and lentiviral (LV) vectors for transduction of neurons in a wide range of brain structures and species, the diversity of cell types within a given brain structure is rarely considered. For example, the ability of a vector to transduce neurons within a brain structure is often assumed to indicate that all neuron types within the structure are transduced. We have characterized the transduction of mouse somatosensory cortical neuron types by recombinant AAV pseudotyped with serotype 1 capsid (rAAV2/1) and by recombinant lentivirus pseudotyped with the vesicular stomatitis virus (VSV) glycoprotein. ⋯ We demonstrate that high titer rAAV2/1-hSyn efficiently transduces both cortical excitatory and inhibitory neuronal populations, but use of lower titers exposes a strong preference for transduction of cortical inhibitory neurons and layer 5 pyramidal neurons. In contrast, we find that VSV-G-LV-hSyn principally labels excitatory cortical neurons at the highest viral titer generated. These findings demonstrate that endogenous tropism of rAAV2/1 and VSV-G-LV can be used to obtain preferential gene expression in mouse somatosensory cortical inhibitory and excitatory neuron populations, respectively.
-
Although the mouse is an experimental model with an increasing importance in various fields of neuroscience, the characteristics of its central gustatory pathways have not yet been well documented. Recent electrophysiological studies using the rat and hamster have revealed that taste processing in the brainstem gustatory relays is under the strong influence of inputs from forebrain gustatory structures. In the present study, we investigated the organization of afferent projections to the mouse parabrachial nucleus (PbN), which is located at a key site between the brainstem and gustatory, viscerosensory and autonomic centers in the forebrain. ⋯ Numbers of labeled neurons in the main components of the gustatory system including the insular cortex, bed nucleus of the stria terminalis, central nucleus of the amygdala, lateral hypothalamus, and rostral nucleus of the solitary tract were quantified. These results are basically consistent with those of the previous rat and hamster studies, but some species differences were found. Functional implications of these afferent inputs are discussed with an emphasis on their role in taste.
-
In the present study, we asked whether multiple intrathecal injections of deltorphin II, a selective delta opioid receptor (DOPR) agonist, induced DOPR tolerance in three behavioral assays. Unilateral inflammation caused by complete Freund's adjuvant (CFA) injection into the rat or mouse hind paw (CFA model) induced thermal hyperalgesic response that was transiently and dose-dependently reduced by intrathecal administration of deltorphin II or morphine. In both rodent species, the effect of deltorphin II was not modified by a single prior administration of deltorphin II, suggesting an absence of acute tolerance in this paradigm. ⋯ In contrast to the antihyperalgesic responses, tolerance to the motoric effect of deltorphin II was evident in mice previously exposed to multiple intrathecal agonist injections, but not multiple saline administrations. Using the tail flick antinociceptive test, we found that DOPR-mediated analgesia was significantly reduced by repeated exposure to deltorphin II. Altogether, these observations suggest that repeated injections of DOPR agonists induce differential tolerance effects on antihyperalgesic, antinociceptive, and motor incoordination/ataxia-like behaviors related to DOPR activation by deltorphin II.