Neuroscience
-
Our previous finding, that the capsaicin- and KCl-induced Ca(2+)-dependent production of the intra- and intercellular signaling molecule N-arachidonoyl ethanolamine (anandamide) in cultured primary sensory neurons could be abolished and reduced by approximately 2/3 by capsaicin-induced degeneration of capsaicin-sensitive neurons, respectively suggests that a major sub-population of capsaicin-sensitive cells together with a group of non-capsaicin-sensitive cells should express enzymes involved in Ca(2+)-dependent anandamide synthesis. N-acyl phosphotidylethanolamine phospholipase D (NAPE-PLD) is known to be involved in Ca(2+)-dependent anandamide production. Hence, here, we used reverse transcriptase and quantitative real time polymerase chain reaction to study NAPE-PLD expression in dorsal root ganglia and to clarify the sub-population of cells expressing this enzyme. ⋯ Furthermore, we also report that capsaicin application downregulates the expression of NAPE-PLD as well as the capsaicin receptor, transient receptor potential vanilloid type 1 ion channel, by about 70% in the cultures prepared from dorsal root ganglia. These findings indicate that a major sub-population of capsaicin-sensitive primary sensory neurons expresses NAPE-PLD, and suggest that NAPE-PLD is expressed predominantly by capsaicin-sensitive neurons in dorsal root ganglia. These data also suggest that NAPE-PLD might be a target to control the activity and excitability of a major sub-population of nociceptive primary sensory neurons.
-
The role of chemokines in immune function is clearly established. Recent evidence suggests that these molecules also play an important role in the central nervous system as modulators of neuronal activity. The chemokine CXCL12 has been identified in several regions of the adult rat brain including the substantia nigra, ventral tegmental area and caudate putamen. ⋯ Conversely, administration of CXCL12 into the lateral shell of the nucleus accumbens resulted in an inhibition of cocaine-stimulated ambulatory activity. No alterations in ambulatory or stereotypic activity were observed following CXCL12 administration into the core of the nucleus accumbens. These results demonstrate that CXCL12 can modulate the behavioral effects produced by cocaine in a brain region-specific manner.
-
In Drosophila, mushroom bodies are centers for higher order behavior. Mushroom body neurons consist of three distinct types of neuronal cells, alpha, alpha'/beta', and alpha/beta, which are all generated by the same neuroblasts. ⋯ Reduced bun expression causes decreased and premature arrest of neuroblast cell division, which results in reduced numbers of alpha/beta neurons and thin axon bundled formation. We propose that bun acts as a specific factor in regulating neuroblast mitotic activity during the development of alpha/beta neurons.
-
We recorded 872 single units across the complete sleep-waking cycle in the mouse preoptic area (POA) and basal forebrain (BFB), which are deeply involved in the regulation of sleep and wakefulness (W). Of these, 552 were sleep-active, 96 were waking-active, 106 were active during both waking and paradoxical sleep (PS), and the remaining 118 were state-indifferent. Among the 872, we distinguished slow-wave sleep (SWS)-specific, SWS/PS-specific, PS-specific, W-specific, and W/PS-specific neurons, the last group being further divided into specific tonic type I slow (TI-Ss) and specific tonic type I rapid (TI-Rs) both discharging specifically in association with cortical activation during both W and PS. ⋯ At the transition from SWS to W, the sleep-specific neurons showed a significant decrease in firing rate 0.1 s before the onset of cortical activation, while the W-specific and W/PS-specific neurons fired >0.5 s before the onset. TI-Ss neurons were characterized by a triphasic broad action potential, slow single isolated firing, and an antidromic response to cortical stimulation, whereas TI-Rs neurons were characterized by a narrow action potential and high frequency burst discharge in association with theta waves in PS. These data suggest that the forebrain sleep/waking switch is regulated by opposing activities of sleep-promoting (SWS-specific and SWS/PS-specific) and waking-promoting (W-specific and W/PS-specific) neurons, that the initiation of sleep is caused by decreased activity of the waking-promoting neurons (disfacilitation), and that the W/PS-specific neurons are deeply involved in the processes of cortical activation/deactivation.