Neuroscience
-
Mice lacking orexin/hypocretin signaling have sudden episodes of atonia and paralysis during active wakefulness. These events strongly resemble cataplexy, episodes of sudden muscle weakness triggered by strong positive emotions in people with narcolepsy, but it remains unknown whether murine cataplexy is triggered by positive emotions. To determine whether positive emotions elicit murine cataplexy, we placed orexin knockout (KO) mice on a scheduled feeding protocol with regular or highly palatable food. ⋯ With this highly palatable food, orexin KO mice had much more cataplexy during the food-anticipation period and throughout the dark period. The increase in cataplexy with scheduled feeding, especially with highly palatable food, suggests that positive emotions may trigger cataplexy in mice, just as in people with narcolepsy. Establishing this connection helps validate orexin KO mice as an excellent model of human narcolepsy and provides an opportunity to better understand the mechanisms that trigger cataplexy.
-
The alpha 7 subunit of the nicotinic acetylcholine receptor (alpha7nAChR) is expressed in the prefrontal cortex (PFC), a brain region where these receptors are implicated in cognitive function and in the pathophysiology of schizophrenia. Activation of this receptor is dependent on release of acetylcholine (ACh) from axon terminals that contain the vesicular acetylcholine transporter (VAChT). Since rat and mouse models are widely used for studies of specific abnormalities in schizophrenia, we sought to determine the subcellular location of the alpha7nAChR with respect to VAChT storage vesicles in axon terminals in the PFC in both species. ⋯ Of the alpha7nAChR-labeled axons, 47% (37/79) also contained VAChT, suggesting that ACh release is autoregulated through the presynaptic alpha7nAChR. The VAChT-labeled terminals rarely formed synapses, but frequently apposed alpha7nAChR-containing neuronal profiles. These results suggest that in rodent PFC, the alpha7nAChR plays a major role in modulation of the postsynaptic excitation in spiny dendrites in contact with VAChT containing axons.
-
Increased angiogenesis and an altered blood-brain barrier have been reported in the brain of dystrophin-deficient mdx mouse, an experimental model of Duchenne muscular dystrophy. To further elucidate the mechanisms underlying angiogenesis in Duchenne muscular dystrophy, in this study we evaluated whether nerve growth factor (NGF) and nerve growth factor receptors (NGFRs) are involved, then correlated NGF-NGFRs expression with vascular endothelial growth factor (VEGF) and its receptor-2 (VEGFR-2) content and matrix metalloproteinases-2 and -9 (MMP-2 and -9) activity, by confocal laser microscopy and immunohistochemistry. Results showed that neurons, astrocytes and ependymal cells were strongly labeled by NGF in mdx brain, expressing NGFRs on glial and endothelial cells. ⋯ Immunogold electron microscopy demonstrated NGFR gold particles on endothelial cells in mdx brain, while in controls few particles were recognizable only on glial end feet. Western blotting and real time polymerase chain reaction (RT-PCR) demonstrated a higher expression of NGF and NGFR mRNA and protein in mdx brain as compared to controls, and increase of VEGF-VEGFR-2 and active MMP-2 and -9 content. Overall, these data suggest that in the brain of mdx mice, an upregulation of the NGF-NGFRs system might be involved directly, or indirectly through the activation of VEGF-VEGFR-2 and MMP-2 and -9, in the angiogenic response taking place in this pathological condition.
-
Photic responses of the circadian system are mediated through light-induced clock gene expression in the suprachiasmatic nucleus (SCN). In nocturnal rodents, depending on the timing of light exposure, Per1 and Per2 gene expression shows distinct compartmentalized patterns that correspond to the behavioral responses. Whether the gene- and region-specific induction patterns are unique to nocturnal animals, or are also present in diurnal species is unknown. ⋯ This compartmentalized expression pattern is very similar to that observed in nocturnal rodents, suggesting that the same molecular and intercellular pathways underlying acute photic responses are present in both diurnal and nocturnal species. However, after an LP in early subjective day, which induces phase advances in diurnal grass rats, but not in nocturnal rodents, we did not observe any Per1 or Per2 induction in the SCN. This result suggests that in spite of remarkable similarities in the SCN of diurnal and nocturnal rodents, unique mechanisms are involved in mediating the phase shifts of diurnal animals during the subjective day.
-
The neural plasticity mechanisms that underlie learning and memory may also be engaged when drug addiction occurs. It was reported that long-lasting neuroadaptations induced by cocaine use and withdrawal require the participation of hippocampus. However, the role of corticotrophin-releasing factor receptors in this process remains unclear. ⋯ We found that cocaine withdrawal, but not the chronic cocaine administration itself, significantly enhanced the magnitude of LTP in hippocampal slices, as compared with that in saline controls. Selective blockade of corticotrophin-releasing factor receptor subtype 1 (CRF(1)) with the specific antagonist NBI 27914 (100 nM in vitro) attenuated the magnitude of LTP in hippocampal slices from cocaine withdrawal rats, and intriguingly, also from saline control rats, while specific blockade of corticotrophin-releasing factor receptor subtype 2 (CRF(2)) with astressin2-B (100 nM in vitro) selectively attenuated the magnitude of LTP in hippocampal slices from cocaine withdrawal rats. Our data suggest that short-term cocaine withdrawal treatment may cause synaptic plasticity in hippocampus partially via changing the activity of CRF(2) in the hippocampus.