Neuroscience
-
To investigate the minimum neuron and neurite densities required for synchronized bursts, we cultured rat cortical neurons on planar multi-electrode arrays (MEAs) at five plating densities (2500, 1000, 500, 250, and 100 cells/mm(2)) using two culture media: Neuron Culture Medium and Dulbecco's Modified Eagle Medium supplemented with serum (DMEM/serum). Long-term recording of spontaneous electrical activity clarified that the cultures exhibiting synchronized bursts required an initial plating density of at least 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum. Immediately after electrical recording, immunocytochemistry of microtubule-associated protein 2 (MAP2) and Neurofilament 200 kD (NF200) was performed directly on MEAs to investigate the actual densities of neurons and neurites forming the networks. ⋯ By comparing both the results of electrophysiological recording and immunocytochemical observation, we revealed that there is a minimum threshold of neuron densities that must be met for the exhibition of synchronized bursts. Interestingly, these minimum densities of MAP2-positive final neurons did not differ between the two culture media; the density was approximately 50 neurons/mm(2). This value was obtained in the cultures with the initial plating densities of 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum.
-
Following unilateral chronic constriction injury (CCI) of the sciatic nerve, histochemical and gene expression changes were examined in the rat nucleus accumbens (NAcc), a region critical to affective-motivational regulation. Rats were categorised as having Pain alone (45%) or Pain and Disability (30%), on the basis of either unaltered or decreased dominance behaviour in the resident-intruder paradigm, respectively. Tyrosine hydroxylase (TH) expression was significantly increased bilaterally, throughout the rostrocaudal extent of the NAcc in Pain alone animals. ⋯ In summary, unilateral CCI in rats induces specific and lateralised adaptations in the dopaminergic circuitry of the NAcc. These distinct neural adaptations correlate with changes in social behaviour, and likely underlie some of the affective-motivational state changes associated with neuropathic pain in a subset of rats (i.e. Pain and Disability group).
-
Schwann cells line nerve fibers in the peripheral nervous system (PNS) and synthesize myelin. In addition, they support neuronal survival, neurite growth and regeneration. In dissociated cultures of postnatal mouse spiral ganglia, regenerating neurites spontaneously associate with Schwann cells. ⋯ After 24 h in vitro, cultures were >85% Schwann cells. Nucleofection of purified Schwann cells with pMax-green fluorescent protein (pMax-GFP) plasmid, or with pEGFP-C-vimentin plasmid returned >45% transfection efficiency. These methods will allow the in-depth characterization of cochlear Schwann cells and an evaluation of their biochemical, functional, and genetic mechanisms that may promote neurite growth from the spiral ganglion.
-
Antipsychotic drugs dose-dependently suppress the spontaneous hyperactivity of the chakragati mouse.
The chakragati (ckr) mouse has been proposed as a model of aspects of schizophrenia. The mice, created serendipitously as a result of a transgenic insertional mutation, exhibit spontaneous circling, hyperactivity, hypertone of the dopamine system, reduced social interactions, enlarged lateral ventricles, deficits in pre-pulse inhibition of acoustic startle and deficits in latent inhibition of conditioned learning. ⋯ Aripriprazole, which is known to be a dopamine D2 receptor partial agonist, exhibited a tri-phasic dose-response, initially suppressing hyperactivity at low doses, having little effect on hyperactivity at intermediate doses, and suppressing activity again at high doses. These data suggest that the spontaneous circling and hyperactivity of the ckr mouse may allow screening of candidate antipsychotic compounds, distinguishing compounds with aripriprazole-like profiles.
-
Synapsins (SynI, SynII, SynIII) are a multigene family of synaptic vesicle (SV) phosphoproteins implicated in the regulation of synaptic transmission and plasticity. Synapsin I, II, I/II and I/II/III knockout mice are epileptic and SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans. We analyzed cortico-hippocampal epileptiform activity induced by 4-aminopyridine (4AP) in acute slices from presymptomatic (3-weeks-old) and symptomatic (1-year-old) Syn I/II/III triple knockout (TKO) mice and aged-matched triple wild type (TWT) controls and assessed the effect of the SV-targeted antiepileptic drug (AED) levetiracetam (LEV) in reverting the epileptic phenotype. ⋯ The lower LEV potency in TKO slices of both ages was associated with a decreased expression of SV2A, a SV protein acting as LEV receptor, in cortex and hippocampus. The results demonstrate that deletion of Syn genes is associated with a higher propensity to 4AP-induced epileptic paroxysms that precedes the onset of epilepsy and consolidates with age. LEV ameliorates such hyper excitability by enhancing the inhibition/excitation ratio, although the effect is hindered in TKO slices which exhibit a concomitant decrease in the levels of the LEV receptor SV2A.