Neuroscience
-
To investigate the minimum neuron and neurite densities required for synchronized bursts, we cultured rat cortical neurons on planar multi-electrode arrays (MEAs) at five plating densities (2500, 1000, 500, 250, and 100 cells/mm(2)) using two culture media: Neuron Culture Medium and Dulbecco's Modified Eagle Medium supplemented with serum (DMEM/serum). Long-term recording of spontaneous electrical activity clarified that the cultures exhibiting synchronized bursts required an initial plating density of at least 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum. Immediately after electrical recording, immunocytochemistry of microtubule-associated protein 2 (MAP2) and Neurofilament 200 kD (NF200) was performed directly on MEAs to investigate the actual densities of neurons and neurites forming the networks. ⋯ By comparing both the results of electrophysiological recording and immunocytochemical observation, we revealed that there is a minimum threshold of neuron densities that must be met for the exhibition of synchronized bursts. Interestingly, these minimum densities of MAP2-positive final neurons did not differ between the two culture media; the density was approximately 50 neurons/mm(2). This value was obtained in the cultures with the initial plating densities of 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum.
-
Ectopic neurons are often found in the brains of fetal alcohol spectrum disorders (FASD) and fetal alcohol syndrome (FAS) patients, suggesting that alcohol exposure impairs neuronal cell migration. Although it has been reported that alcohol decreases the speed of neuronal cell migration, little is known about whether alcohol also affects the turning of neurons. Here we show that ethanol exposure inhibits the turning of cerebellar granule cells in vivo and in vitro. ⋯ Second, in vitro analysis using microexplant cultures of P0-P3 mouse cerebella revealed that ethanol directly reduces the frequency of spontaneous granule cell turning in a dose-dependent manner. Third, the action of ethanol on the frequency of granule cell turning was significantly ameliorated by stimulating Ca(2+) and cGMP signaling or by inhibiting cAMP signaling. Taken together, these results indicate that ethanol affects the frequency and mode of cerebellar granule cell turning through alteration of the Ca(2+) and cyclic nucleotide signaling pathways, suggesting that the abnormal allocation of neurons found in the brains of FASD and FSA patients results, at least in part, from impaired turning of immature neurons by alcohol.
-
The concept that intestinal microbial composition not only affects the health of the gut, but also influences centrally-mediated systems involved in mood, is supported by a growing body of literature. Despite the emergent interest in brain-gut communication and its possible role in the pathogenesis of psychiatric disorders such as depression, particularly subtypes with accompanying gastrointestinal (GI) symptoms, there are few studies dedicated to the search for therapeutic solutions that address both central and peripheral facets of these illnesses. This study aims to assess the potential benefits of the probiotic Bifidobacterium infantis in the rat maternal separation (MS) model, a paradigm that has proven to be of value in the study of stress-related GI and mood disorders. ⋯ MS reduced swim behavior and increased immobility in the FST, decreased noradrenaline (NA) content in the brain, and enhanced peripheral interleukin (IL)-6 release and amygdala corticotrophin-releasing factor mRNA levels. Probiotic treatment resulted in normalization of the immune response, reversal of behavioral deficits, and restoration of basal NA concentrations in the brainstem. These findings point to a more influential role for bifidobacteria in neural function, and suggest that probiotics may have broader therapeutic applications than previously considered.
-
The Kv4.2 gene codes for an essential subunit of voltage-gated A-type potassium channels that are involved in dendritic signal integration and synaptic plasticity. Detailed cellular characterization in CA1 pyramidal neurons of the hippocampus has shown that knocking out the Kv4.2 gene increases neuronal excitability and promotes long-term potentiation. However, the overall behavioral consequences of these modifications have not been fully explored. ⋯ Electrophysiology recordings in the prefrontal cortex showed a blunting of postsynaptic response to direct 5-HT application following a single period of swim stress only in the animals without the Kv4.2 subunit. Based on our findings, we hypothesize that Kv4.2 KO mice may have an exaggerated 5-HT response to stress leading to a premature desensitization of postsynaptic receptors and a loss of continued behavior modulation. These results may shed some light on the involvement of A-type potassium channels in the effective action of selective serotonin reuptake inhibitor (SSRI) antidepressants.
-
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates cell proliferation, differentiation and growth. It regulates neural and glioma stem/progenitor cell renewal and PTEN deletion can drive expansion of epithelial progenitors in the lung, enhancing their capacity for regeneration. Because it is expressed at relatively high levels in developing mammalian auditory hair cells we have analyzed the phenotype of the auditory epithelium in PTEN knock-out mice. ⋯ The cytoskeletal differentiation of hair cells was also affected. While many hair bundles on the hair cells appeared to develop normally, others were structurally disorganized and a number were missing, apparently lost after they had been formed. The results show that PTEN plays a novel role in regulating cell proliferation and differentiation of hair bundles in auditory sensory epithelial cells and suggest that PTEN signaling pathways may provide therapeutic targets for auditory sensory regeneration.