Neuroscience
-
The mechanisms underlying diabetic encephalopathy, are largely unknown. Here, we examined whether docosahexaenoic acid (DHA) and lutein could attenuate the oxidative changes of the diabetic cerebral cortex. The levels of malondialdehyde (MDA) were significantly increased and glutathione (GSH) and glutathione peroxidase activity (GPx) were decreased in diabetic rats. ⋯ The latter demonstrated extensive overlap with the 4-HNE staining in the cortex from diabetic rats. Our findings demonstrate a clear participation of glucose-induced oxidative stress in the diabetic encephalopathy, and that the cells suffering oxidative stress are neurons. Lowering oxidative stress through the administration of different antioxidants may be beneficial for the central nervous tissue in diabetes.
-
The contribution of endogenous nociceptin/orphanin FQ (N/OFQ) to neuroleptic-induced parkinsonism has been evaluated in haloperidol-treated mice. Pharmacological blockade of N/OFQ receptors (NOP) via systemic administration of 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one (J-113397, 0.01-10 mg/kg i.p.) or central injection of [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-101, 10 nmol i.c.v.) attenuated (0.8 mg/kg) haloperidol-induced motor deficits as evaluated by a battery of behavioral tests providing complementary information on motor parameters: the bar, drag and rotarod tests. A combined neurochemical and behavioral approach was then used to investigate whether the substantia nigra reticulata could be involved in antiakinetic actions of J-113397. ⋯ Microdialysis coupled to behavioral testing also demonstrated that NOP receptor knockout mice were resistant to haloperidol (0.3 mg/kg) compared to wild-type mice, lack of response being associated with a reversal of glutamate release facilitation into inhibition and no change in nigral GABA release. This study provides pharmacological and genetic evidence that endogenous N/OFQ contributes to haloperidol-induced akinesia and changes of amino acid transmission in mice. Moreover, it confirms the view that NOP receptor antagonists are capable of reversing akinesia across species and genotypes and may prove effective in relieving neuroleptic-induced parkinsonism.