Neuroscience
-
The role of voltage-gated sodium channels in the transmission of neuropathic pain is well recognized. For instance, genetic evidence recently indicate that the human Nav1.7 sodium channel subtype plays a crucial role in the ability to perceive pain sensation and may represent an important target for analgesic/anti-hyperalgesic drugs. In this study a newly synthesized tocainide congener, named NeP1, was tested in vitro on recombinant hNav1.4 and hNav1.7 channels using patch-clamp technique and, in vivo, in two rat models of persistent neuropathic pain obtained either by chronic constriction injury of the sciatic nerve or by oxaliplatin treatment. ⋯ In oxaliplatin-treated rats, NeP1 even produced greater and more durable anti-hyperalgesia than the reference drug tramadol. In addition, in vivo and in vitro studies suggest a better toxicological and pharmacokinetic profile for NeP1 compared to tocainide. Overall, these results indicate NeP1 as a new promising lead compound for further development in the treatment of chronic pain of neuropathic origin.
-
Estrogen (17beta-estradiol) plays key regulatory roles in a variety of physiological and biological processes. Several lines of evidence also support its role as a protective factor in Alzheimer's disease; however, the basis of this effect is unclear. ⋯ These results illustrate a multifaceted effect of 17beta-estradiol on the biochemical basis of Alzheimer's disease, through effects on APP processing, Abeta levels and factors that affect its clearance and aggregation. Overall, these results support the need for further long-term longitudinal studies to elucidate consequences of menopause as well as hormone therapy on Alzheimer's disease, and explore its potential as a therapeutic avenue for the disease.
-
Calcitonin gene related peptide (CGRP) has a key role in migraine and recently CGRP receptor antagonists have demonstrated clinical efficacy in the treatment of migraine. However, it remains unclear where the CGRP receptors are located within the CGRP signaling pathway in the human trigeminal system and hence the potential antagonist sites of action remain unknown. Therefore we designed a study to evaluate the localization of CGRP and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein (RAMP) 1 in the human trigeminal ganglion using immunohistochemistry and compare with that of rat. ⋯ Glial cells also contain the CGRP receptor components but not CGRP. Our results indicate, for the first time, the possibility of CGRP signaling in the human trigeminal ganglion involving both neurons and satellite glial cells. This suggests a possible site of action for the novel CGRP receptor antagonists in migraine therapy.
-
Antagonists selectively inhibiting activation of the nociceptin/orphanin FQ (N/OFQ) receptor reduce motor symptoms in experimental models of Parkinson's disease, and genetic deletion of the ppN/OFQ gene offers partial protection of mid-brain dopamine neurons against the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP increased ppN/OFQ mRNA expression in the substantia nigra (SN). We have evaluated the temporal relationship of dopamine cell loss to increased ppN/OFQ mRNA expression in the substantia nigra after MPTP treatment, and characterized the cellular locations in which increased ppN/OFQ mRNA expression was observed after MPTP treatment. ⋯ MPTP treatment resulted in a small increase in the numbers of neurons expressing ppN/OFQ in the SNc in mice from one mouse colony but the increase did not reach statistical significance in mice from another colony. No changes in ppN/OFQ-mRNA expression were observed in the ventral tegmental area (VTA), the caudate-putamen, the subthalamic nucleus, or in two other brains areas. These results demonstrate that increased N/OFQ expression in the SNr is closely associated with the MPTP-induced loss of dopamine neurons in the SNc in a widely used animal model of Parkinson's disease.
-
Ocular exposure to ultraviolet irradiation (UVR) induces photokeratitis, a common environmental concern that inflames ocular tissues and causes pain. The central neural mechanisms that contribute to the sensory aspects of photokeratitis after UVR are not known. In awake male rats, ocular surface application of hypertonic saline evoked eye wipe behavior that was enhanced 2-3 days after UVR and returned to control levels by 7 days. ⋯ Aqueous humor protein levels were elevated 2 and 7 days after UVR. UVR enhanced nociceptive behavior, after a latent period, with a time course similar to that of ocular neurons in superficial laminae at the Vc/C1 region. The Vc/C1 region plays a key role in primary hyperalgesia induced by UVR, whereas the Vi/Vc region likely mediates other aspects of ocular function.