Neuroscience
-
Comparative Study
Sensory innervation of the thoracolumbar fascia in rats and humans.
The available data on the innervation of the thoracolumbar fascia (TLF) are inconsistent and partly contradictory. Therefore, the role of the fascia as a potential source of pain in the low back is difficult to assess. In the present study, a quantitative evaluation of calcitonin gene-related peptide (CGRP) and substance P (SP)-containing free nerve endings was performed in the rat TLF. ⋯ The subcutaneous tissue and the outer layer showed a particularly dense innervation with sensory fibers. SP-positive free nerve endings-which are assumed to be nociceptive-were exclusively found in these layers. Because of its dense sensory innervation, including presumably nociceptive fibers, the TLF may play an important role in low back pain.
-
Comparative Study
Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels.
It is well established that physical exercise can enhance hippocampal-dependent forms of learning and memory in laboratory animals, commensurate with increases in hippocampal neural plasticity (brain-derived neurotrophic factor [BDNF] mRNA/protein, neurogenesis, long-term potentiation [LTP]). However, very little is known about the effects of exercise on other, non-spatial forms of learning and memory. In addition, there has been little investigation of the duration of the effects of exercise on behavior or plasticity. ⋯ Two or four weeks later, however, rats that had previously exercised as adolescents could still discriminate between novel and familiar objects, while non-exercising rats could not. Moreover, the formerly exercising rats exhibited higher levels of BDNF in PER compared to HP, while the reverse was true in the non-exercising rats. These findings reveal a novel interaction between exercise, development, and medial temporal lobe memory systems.
-
Comparative Study
Spatial and temporal expression patterns of nicotinic acetylcholine α9 and α10 subunits in the embryonic and early postnatal inner ear.
The expression and function of nicotinic receptor subunits (nAChRs) in the inner ear before the onset of hearing is not well understood. We investigated the mRNA expression of the α9 and α10 nAChR subunits in sensory hair cells of the embryonic and postnatal rat inner ear. We mapped their spatial and temporal expression in cochlear and vestibular hair cells using qPCR, [35S] labeled cRNA in situ hybridization, and α-bungarotoxin (α-Bgt) to label the presumptive membrane-bound receptor on cochlear hair cells. The results suggest that (1) the mRNA expression of the α9 subunit precedes expression of the α10 subunit in both cochlear and vestibular hair cells, (2) the mRNA expression of both the α9 and α10 subunits occurs earlier in the vestibular system than in the cochlea, (3) the mRNA expression of both subunits is required for the assembled receptor complexes, and (4) the presumptive assembled receptor, at least in the cochlea, is associated with synapse formation and the onset of function.
-
Previous reports have indicated that adenosine A3 receptor (A3R) knockout mice are more sensitive to ischemic or hypoxic brain injury. The purpose of this study was to examine if suppression of A3R expression is associated with increase in sensitivity to injury induced by a high dose of methamphetamine (Meth). Adult male A3R null mutant (-/-) mice and their controls (+/+) were injected with four doses (2 h apart) of Meth (10 mg/kg) or saline. ⋯ Previous studies have shown that pharmacological suppression of vesicular monoamine transport 2 (VMAT2) by reserpine enhanced Meth toxicity by increasing cytosolic DA and inflammation. A significant reduction in striatal VMAT2 expression was found in -/- mice compared to +/+ mice, suggesting that increase in sensitivity to Meth injury in -/- mice may be related to a reduction in VMAT2 expression in these mice. In conclusion, our data suggest that A3R -/- mice are more sensitive to high doses of Meth.
-
Comparative Study
Citalopram-mediated anxiolysis and differing neurobiological responses in both sexes of a genetic model of depression.
Disorders such as depression and anxiety exhibit strong sex differences in their prevalence and incidence, with women also differing from men in their response to antidepressants. Furthermore, receptors for corticotrophin releasing hormone (CRHR1) and arginine vasopressin receptor subtype 1b (AVPR1b) are known to contribute to the regulation of mood and anxiety. In the present study, we compared the anxiety profile and CRHR1 and AVPR1b expression levels in control Sprague-Dawley (SD) rats and rats of the SD-derived Flinders Sensitive Line (FSL), a genetic model of depression. ⋯ Importantly, whereas citalopram altered AVPR1b expression in the hypothalamus of male FSL rats, its actions on this parameter were restricted to the PFC in female FSL rats. In both sexes of FSL rats, citalopram did not alter CRHR1 expression in either the hypothalamus or PFC. Our results demonstrate that antidepressant treatment reduces anxiety levels in FSL rats of both sexes: the magnitude of treatment effect was related to the starting baseline level of anxiety and the antidepressant elicited sexually differentiated neurobiological responses in specific brain regions.