Neuroscience
-
Several lines of evidence suggest the existence of multiple progestin receptors that may account for rapid and delayed effects of progesterone in the CNS. The delayed effects have been long attributed to activation of the classical progestin receptor (Pgr). Recent studies have discovered novel progestin signaling molecules that may be responsible for rapid effects. ⋯ Analyses of adjacent brain sections showed that the highest expression of mRNAs encoding Pgr, Pgrmc1, Pgrmc2 and Serbp1 was detected in several hypothalamic nuclei important for female reproduction. In contrast, expression patterns of Paqr7 and Paqr8 were low and homogeneous in the hypothalamus, and more abundant in thalamic nuclei. The neuroanatomical distributions of these putative progestin signaling molecules suggest that Pgrmc1 and Pgrmc2 may play roles in neuroendocrine functions while Paqr7 and Paqr8 are more likely to regulate sensory and cognitive functions.
-
The synthetic retinoid 13-cis-retinoic acid (13-cis-RA), prescribed for the treatment of severe nodular acne, has been linked to an increased incidence of depression. Chronic treatment studies in rodents have shown that 13-cis-RA induces an increase in depression-related behaviours and a functional uncoupling of the hippocampus and dorsal raphe nucleus (DRN). Changes in the number of serotoninergic neurons in the DRN have been reported in depressed human patients. ⋯ Similarly, changes in the density of serotoninergic neurons or in the volume of the MRN or DRN were not observed in 13-cis-RA treated animals. These data show that apoptotic actions of 13-cis-RA do not occur in vivo at drug concentrations that induce changes in depression-related behaviour and functional uncoupling of the DRN and hippocampus. The potential pro-depressant behavioural and molecular effects associated with chronic administration of 13-cis-RA may result from changes in serotoninergic activity rather than changes in the number of serotoninergic neurons.
-
Mitogen-activated protein kinases (MAPKs) are important signaling factors in many cellular processes including cell proliferation and survival during development and synaptic plasticity induced by acute nociception in the adult. There is extensive evidence for the involvement of members of the MAPK family, the extracellular signal-regulated kinases 1 and 2 (ERKs 1/2), in the development of acute inflammatory somatic and visceral pain, but their role in the maintenance of chronic pain states is unknown. We have previously shown that ovariectomy of adult mice (OVX) generates a persistent and estrogen-dependent abdominal hyperalgesic state that lasts for several months and is not related to a persistent nociceptive afferent input. ⋯ Administration of slow-release pellets containing 17β-estradiol at week 5 post OVX reversed both the development of the hyperalgesia and the enhanced activation of ERK 1/2, suggesting that this activation, like the hyperalgesic state, was estrogen-dependent. Intrathecal injections of the ERK 1/2 inhibitor U0126 successfully rescued the mice from the abdominal hyperalgesia for up to 24 h after the injection and also reversed the enhanced expression of ERK 1/2. Our study shows, for the first time, activation of ERK 1/2 in the spinal cord matching the time course of an estrogen-dependent chronic hyperalgesic state.
-
The mechanism of action of the A2A adenosine receptor agonist 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) in the facilitation of spontaneous (isotonic and hypertonic condition) and K+-evoked acetylcholine (ACh) release was investigated in the mouse diaphragm muscles. At isotonic condition, the CGS-21680-induced excitatory effect on miniature end-plate potential (MEPP) frequency was not modified in the presence of CdCl2 and in a medium free of Ca2+ (0Ca2+-EGTA), but it was abolished after buffering the rise of intracellular Ca2+ with 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra(acetoxy-methyl) (BAPTA-AM) and when the Ca2+-ATPase inhibitor thapsigargin was used to deplete intracellular Ca2+ stores. CGS-21680 did not have a direct effect on the Ca2+-independent neurotransmitter-releasing machinery, since the modulatory effect on the hypertonic response was also occluded by BAPTA-AM and thapsigargin. ⋯ The blockade of Ca2+ release from endoplasmic reticulum with ryanodine antagonized the facilitating effect of CGS-21680 in control and high K+ concentration. It is concluded that, at the mouse neuromuscular junction, activation of A2A receptors facilitates spontaneous and K+-evoked ACh release by an external Ca2+-independent mechanism but that involves mobilization of Ca2+ from internal stores: during spontaneous ACh release stimulating directly the ryanodine-sensitive stores and, at high K+, probably modulating the L-type VDCCs which may cause the opening of the ryanodine receptors that would be directly coupled to the channels. In both cases, Ca2+ released from the endoplasmic reticulum would be capable of activating the exocytotic machinery, thus producing facilitation of ACh release.
-
Recent studies suggested that acute sound exposure resulting in a temporary threshold shift in young adult animals within a series of maladaptive plasticity changes in central auditory structures. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in post-trauma peripheral hair cell and spiral ganglion cell survival and has been shown to modulate synaptic strength in cochlear nucleus following sound exposure. The present study evaluated levels of BDNF and its receptor (tyrosine kinase B, [TrkB]) in the dorsal cochlear nucleus (DCN) following a unilateral moderate sound exposure in young (7-8 months) and aged (28-29 months) Fischer Brown Norway (FBN) rats. ⋯ Protein levels of the BDNF receptor, TrkB, were also significantly increased in aged but not in young sound-exposed DCN fusiform cells. The present findings suggest a relationship between the up-regulation of BDNF/TrkB and the increase in spontaneous and driven activity previously observed for aged and sound-exposed fusiform cells. This might be due to a selective maladaptive compensatory down-regulation of glycinergic inhibition in DCN fusiform cells.