Neuroscience
-
Comparative Study
GABA and glycine immunolabeling in the chicken tangential nucleus.
In the vestibular nuclei, GABAergic and glycinergic neurons play important roles in signal processing for normal function, during development, and after peripheral vestibular lesions. The chicken tangential nucleus is a major avian vestibular nucleus, whose principal cells are projection neurons with axons transmitting signals to the oculomotor nuclei and/or cervical spinal cord. Antibodies against GABA, glycine and glutamate were applied to study immunolabeling in the tangential nucleus of 5-7 days old chicken using fluorescence detection and confocal imaging. ⋯ GABA and glycine double-labeling experiments revealed little colocalization of these two neurotransmitters in synaptic terminals or fibers in the tangential nucleus. Our data support the concept of GABA and glycine playing critical roles as inhibitory neurotransmitters in the tangential nucleus. The two inhibitory neurotransmitters have distinct and separate origins and display contrasting subcellular termination patterns, which underscore their discrete roles in vestibular signal processing.
-
Comparative Study
Different effects of zolpidem and diazepam on hippocampal sharp wave-ripple activity in vitro.
Sharp waves and the concurrent high-frequency "ripple" oscillation (100-200 Hz) is a prominent intrinsic hippocampal network activity that occurs during slow-wave sleep and resting wakefulness with an important role in memory processes. Present data suggest that the generation of sharp wave-ripple (SWRs) requires a complex interaction between the various components of the hippocampal network with the important involvement of GABA(A) receptor (GABA(A)R)-mediated transmission. The positive modulators of GABA(A)Rs zolpidem and diazepam differ in their selectivity for the various subtypes of GABA(A)Rs. ⋯ It was also observed that at low concentrations both drugs increased the rate of initiation of episodes of SWR. At high concentration zolpidem but not diazepam continued to increase the rate of episodes of SWRs. We propose that an accurate yet dynamic balance between excitation and inhibition in specific sites of the hippocampal network distinctly regulates the generation of basic features of SWRs such as ripples and sequential activation of the neuronal assemblies which have particular functional roles.
-
In larval lamprey, spinal locomotor activity can be initiated by pharmacological microstimulation from the following higher order brain locomotor areas [Paggett et al. (2004) Neuroscience 125:25-33; Jackson et al. (2007) J Neurophysiol 97:3229-3241]: rostrolateral rhombencephalon (RLR); ventromedial diencephalon (VMD); or dorsolateral mesencephalon (DLM). In the present study, pharmacological microstimulation with excitatory amino acids (EAAs) or their agonists in the brains of in vitro brain/spinal cord preparations was used to determine the sizes, pharmacology, and organization of these locomotor areas. First, the RLR, DLM and VMD locomotor areas were confined to relatively small areas of the brain, and stimulation as little as 50 μm outside these areas was ineffective or elicited tonic or uncoordinated motor activity. ⋯ Third, with synaptic transmission blocked only in the brain, stimulation in the RLR, VMD, or DLM no longer initiated spinal locomotor activity, suggesting that these locomotor areas do not directly activate spinal locomotor networks. Fourth, following a complete transection at the mesencephalon-rhombencephalon border, stimulation in the RLR no longer initiated spinal motor activity. Thus, the RLR locomotor area does not appear able to initiate spinal locomotor activity by neural circuits confined entirely within the rhombencephalon but requires more rostral neural centers, such as those in the VMD and DLM, as previously proposed [Paggett et al. (2004) Neuroscience 125:25-33].
-
Syntaxin 1A is a membrane protein playing an integral role in exocytosis and membrane trafficking. The superficial dorsal horn (SDH) of the spinal cord, where nociceptive synaptic transmission is modulated, is rich in this protein. We recently reported that peripheral nerve ligation-induced nociceptive responses are considerably enhanced in syntaxin 1A-knockout mice [Takasusuki T, Fujiwara T, Yamaguchi S, Fukushima T, Akagawa K, Hori Y (2007) Eur J Neurosci 26:2179-2187]. ⋯ These results indicate a possible involvement of syntaxin 1A downregulation in the late maintenance phase of peripheral nerve injury-induced allodynia. In addition, syntaxin 1A knockdown by ribonucleic acid interference enhanced the axonal elongation and sprouting of spinal dorsal horn neurons in culture, suggesting that PSNL-induced syntaxin 1A downregulation may result in the rearrangement of the synaptic connections between neurons in the spinal dorsal horn. Taken together, it is possible to conclude that syntaxin 1A might be involved in spinal nociceptive plasticity induced by peripheral nerve injury.
-
Brain networks and cognition have recently begun to attract attention: studies suggest that more efficiently wired resting-state brain networks are indeed correlated with better cognitive performance. "Small-world" brain networks combine local segregation with global integration, hereby subserving information processing. Furthermore, recent studies implicate that gender effects may be present in both network dynamics and its correlations with cognition. This study reports on the relation between resting-state functional brain topology with overall and domain-specific cognitive performance in healthy participants and possible gender differences herein. ⋯ There were no significant correlations between network topology and cognitive functioning in females. In contrast, higher cognitive scores in men were associated with increased theta band clustering and small-worldness. These results provide further evidence for the value of functional brain network topology for cognitive functioning and suggest that gender is an important factor in this respect.