Neuroscience
-
Exogenous delivery of the neurotrophin-3 (NT-3) gene may provide a potential therapeutic strategy for ischemic stroke. To investigate the neuroprotective effects of NT-3 expression controlled by 5HRE after focal cerebral ischemia, we constructed a recombinant retrovirus vector (RV) with five copies of hypoxia-responsive elements (5HRE or 5H) and NT-3 and delivered it to the rat brain. Three groups of rats received RV-5H-NT3, RV-5H-EGFP or saline injection. ⋯ Furthermore, the neurological status of RV-5H-NT3-transduced rats was better than that of RV-5H-EGFP- or saline-transduced animals from 1day to 4weeks after tMCAO. Our results demonstrated that 5HRE could modulate NT-3 expression in the ischemic brain environment and that the up-regulated NT-3 could effectively improve neurological status following tMCAO due to decreased initial damage. To avoid unexpected side effects, 5HRE-controlled gene expression might be a useful tool for gene therapy of ischemic disorders in the central nervous system.
-
Vagus nerve stimulation (VNS) is an approved antiepileptic and antidepressant treatment, which has recently shown promise as a therapy for drug-resistant primary headaches. Specific neurobiological mechanisms underlying its anticephalgic action are not elucidated, partly because of the deficiency of research-related findings. The spinal trigeminal nucleus (STN) plays a prominent role in pathophysiology of headaches by modulating pain transmission from intracranial structures to higher centers of the brain. ⋯ In line with the decrease in evoked activity, the VNS-induced depression of ongoing neuronal firing was observed. Although the inhibitory effect was prevailing, 29.5% of STN neurons were facilitated by VNS, whereas 22.5% were unresponsive to the stimulation. These results provide an evidence of VNS-induced modulation of trigeminovascular nociception, and therefore contribute to a deeper understanding of neurophysiological mechanisms underlying effects of vagal stimulation in chronic drug-resistant headaches.
-
Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. ⋯ In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1 overexpression in Nurr1/GPX-1-ES cells increases the viability of differentiated CNS stem-like cells. The result of this study may have impact on future stem cell therapy of PD.
-
N-methyl-D-aspartate receptors (NMDARs) are glutamatergic by virtue of glutamate-binding GluN2 subunits and glycinergic by virtue of glycine-binding GluN1 and GluN3 subunits. The existence, location, and functional-significance of NMDARs containing both GluN2 and GluN3 subunits have as yet remained unelucidated. ⋯ Pharmacology revealed a triheteromeric-receptor with features common to glutamate-activated GluN1/GluN2-containing and glycine-activated GluN1/GluN3-containing diheteromeric NMDARs. However, unlike GluN1/GluN3 receptors, NMDARs at L1 inputs were activated by glutamate and blocked by d-AP5, Ca(2+)-permeable, and more efficient at integrating and potentiating EPSPs selectively over Str inputs during high-frequency stimulation while obviating the need for AMPAR-mediated depolarization.
-
It is not well-studied how the ubiquitous neuromodulator adenosine (ADO) affects mammalian locomotor network activities. We analyzed this here with focus on roles of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)-sensitive A(1)-type ADO receptors. For this, we recorded field potentials from ventral lumbar nerve roots and electrically stimulated dorsal roots in isolated newborn rat spinal cords. ⋯ Our findings show A(1) receptor involvement in ADO depression of the dorsal root reflex, electrically evoked fictive locomotion and spontaneous disinhibited lumbar motor bursting. Contrary, chemically evoked fictive locomotion and the enhanced dorsal root reflex in disinhibited lumbar locomotor networks are resistant to ADO. Because ADO effects in standard solution occurred at doses that are notably higher than those occurring in vivo, we hypothesize that newborn rat locomotor networks are rather insensitive to this neuromodulator.