Neuroscience
-
Profilin1 is an actin monomer-binding protein, essential for cytoskeletal dynamics. Based on its broad expression in the brain and the localization at excitatory synapses (hippocampal CA3-CA1 synapse, cerebellar parallel fiber (PF)-Purkinje cell (PC) synapse), an important role for profilin1 in brain development and synapse physiology has been postulated. We recently showed normal physiology of hippocampal CA3-CA1 synapses in the absence of profilin1, but impaired glial cell binding and radial migration of cerebellar granule neurons (CGNs). ⋯ Thereby, our results demonstrate that the loss of PCs is not caused by cell-autonomous defects, but presumably by impaired CGN migration. Finally, we show normal functionality of PF-PC synapses in the absence of profilin1. In summary, we conclude that profilin1 is crucially important for brain development, but dispensable for the physiology of excitatory synapses.
-
In this study we show that high frequency stimulation (HFS, 100Hz) of afferent fibers to the medial vestibular nucleus (MVN) can induce opposite long-term modifications of synaptic responses in the type B neurons depending upon the stimulation pattern. Long burst stimulation (LBS: 2s) and short burst stimulation (SBS: 0.55s) were applied with different burst number (BN) and inter-burst intervals (IBI). It results that both LBS and SBS can induce either N-methyl-d aspartate receptors (NMDARs)-mediated long-term potentiation (LTP) or long-term depression (LTD), depending on temporal organization of repetitive bursts. ⋯ By contrast, the sign of long-term effect does not depend on the mean impulse frequency evaluated within the entire stimulation period. Therefore, the patterns of repetitive vestibular activation with different ratios between periods of increased activity and periods of basal activity may lead to LTP or LTD probably causing different levels of postsynaptic Ca(2+). On the whole, this study demonstrates that glutamatergic vestibular synapse in the MVN can undergo NMDAR-dependent bidirectional plasticity and puts forward a new aspect for understanding the adaptive and compensatory plasticity of the oculomotor responses.
-
Monodelphis domestica (short-tailed opossum) is an emerging animal model for studies of neural development due to the extremely immature state of the nervous system at birth and its subsequent rapid growth to adulthood. Yet little is known about its normal sensory discrimination abilities. In the present investigation, visual acuity was determined in this species using the optokinetic test (OPT), which relies on involuntary head tracking of a moving stimulus and can be easily elicited using a rotating visual stimulus of varying spatial frequencies. ⋯ However, acuity in the short-tailed opossum is lower than in other marsupials. This is in part due to the methodology used to determine acuity, but may also be due to differences in diel patterns, lifestyle and phylogeny. We demonstrate that for the short-tailed opossum, the OPT is a rapid and reliable method of determining a baseline acuity and can be used to study enhanced acuities due to cortical plasticity.
-
There is increasing evidence that alterations in the focus of attention result in changes in neural responding at the most peripheral levels of the auditory system. To date, however, those studies have not ruled out differences in task demands or overall arousal in explaining differences in responding across intermodal attentional conditions. The present study sought to compare changes in the response of cochlear outer hair cells, employing distortion product otoacoustic emissions (DPOAEs), under different, balanced conditions of intermodal attention. ⋯ Also consistent with our previous findings, DPOAE rapid adaptation, believed to be mediated by the medial olivocochlear efferents (MOC), was unaffected by changes in intermodal attention. The present findings indicate that manipulations in the conditions of attention, through the corticofugal pathway, and its last relay to cochlear outer hair cells (OHCs), the MOC, alter cochlear sensitivity to sound. These data also suggest that the MOC influence on OHC sensitivity is composed of two independent processes, one of which is under attentional control.
-
Brief noxious heat stimuli activate Aδ- and C-fibers and allow contact heat-evoked potentials (CHEPs) to be recorded from the scalp. Under normal conditions, only late responses related to Aδ-fibers can be recorded. This study aimed to demonstrate C-fiber responses to contact heat stimuli. ⋯ Following nerve compression and capsaicin application, ultralate CHEPs with latencies >800 ms could be recorded in 13 subjects (62%), pain intensity to the contact heat stimuli was increased and the warm/hot-burning pain quality became more intense. The main results of our study are the demonstration of ultralate C-fiber-related CHEPs following A-fiber blockade in 29% of healthy subjects increasing to 62% when the blockade was combined with capsaicin. After blockade of Aδ-fibers we recorded responses with latencies in the range between the latencies of Aδ- and C-fibers suggesting release of Aδ-fibers with slower conduction velocity than normally recorded with CHEPs.