Neuroscience
-
Spreading depolarization (SD) is a slowly propagating, coordinated depolarization of brain tissue, which is followed by a transient (5-10min) depression of synaptic activity. The mechanisms for synaptic depression after SD are incompletely understood. We examined the relative contributions of action potential failure and adenosine receptor activation to the suppression of evoked synaptic activity in murine brain slices. ⋯ Antagonists of adenosine A1 receptors (8-cyclopentyl-1,3-dipropylxanthine [DPCPX] or 8-cyclopentyl-1,3-dimethylxanthine [8-CPT]) greatly accelerated fEPSP recovery and abolished increases in paired-pulse ratio normally observed after SD. The duration of fEPSP suppression was correlated with both the duration of the DC shift and the area of tissue depolarized, consistent with the model that adenosine accumulates in proportion to the metabolic burden of SD. These results suggest that in brain slices, the duration of the DC shift approximately defined the period of action potential failure, but the secondary depression of evoked responses was in large part due to endogenous adenosine accumulation after SD.
-
Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. ⋯ In immunohistochemical analysis the remarkable decrease of GFAP was observed in the ventrolateral PAG. The EAAT2 protein level in the 3 weeks stress group (79.6 ± 6.8%) was significantly lower compared to that in the control group (100.0 ± 6.1%, p<0.05). In contrast there was no significant difference in the GFAP and EAAT2 protein levels between the control and 3 days stress groups These findings suggest a dysfunction of the PAG that plays pivotal roles in the organization of strategies for coping with stressors and in pain modulation after chronic restraint stress.
-
The pedunculopontine nucleus (PPN) and central mesencephalic reticular formation (cMRF) both send projections and receive input from areas with known vestibular responses. Noting their connections with the basal ganglia, the locomotor disturbances that occur following lesions of the PPN or cMRF, and the encouraging results of PPN deep brain stimulation in Parkinson's disease patients, both the PPN and cMRF have been linked to motor control. In order to determine the existence of and characterize vestibular responses in the PPN and cMRF, we recorded single neurons from both structures during vertical and horizontal rotation, translation, and visual pursuit stimuli. ⋯ Directional preferences also differed between the PPN, which was preferentially modulated during nose-down pitch, and cMRF, which was preferentially modulated during ipsilateral yaw rotation. Finally, amplitude responses were similar between the PPN and cMRF during rotation and pursuit stimuli, but PPN responses to translation were of higher amplitude than cMRF responses. Taken together with their connections to the vestibular circuit, these results implicate the PPN and cMRF in the processing of vestibular stimuli and suggest important roles for both in responding to motion perturbations like falls and turns.
-
Recently there has been a widespread interest in the development of kappa opioid receptor (KOPR) ligands for treatment of pain, depression and anxiety, and prevention of stress-induced drug relapse. However, most of these preclinical studies have been conducted using male experimental animals. In the present study we examined if sex differences exist in neural activity induced by the KOPR agonist trans-(±)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl) benzeneacetamide methanesulfonate (U50,488H). ⋯ In addition, we observed a notable sex difference in the basolateral amygdala; in males, U50,488H induced an increase in immuno-positive cell numbers but a decrease in females. However, across other brain regions males were generally more sensitive to U50,488H-induced alterations than females. These results suggest the need to include female subjects in studies examining emotional responses to KOPR ligands.
-
The entorhinal cortex is a brain area with multiple reciprocal connections to the hippocampus, amygdala, perirhinal cortex, olfactory bulb and piriform cortex. As such, it is thought to play a large role in the olfactory memory process. The present study is the first to compare lateral entorhinal and anterior piriform cortex odor-evoked single-unit and local field potential activity in mouse. ⋯ In addition, units in lateral entorhinal cortex were responsive to a more restricted set of odors compared to piriform. Conversely, odor-evoked power change in local field potential activity was greater in the lateral entorhinal cortex in the theta band than in piriform. The highly odor-specific and restricted firing in lateral entorhinal cortex suggests that it may play a role in modulating odor-specific, experience- and state-dependent olfactory coding.