Neuroscience
-
Cardiorespiratory control neurons in the brainstem nucleus tractus solitarius (NTS) undergo dramatic expansion of dendritic arbors during the early postnatal period, when functional remodeling takes place within the NTS circuitry. However, the underlying molecular mechanisms of morphological maturation of NTS neurons are largely unknown. Our previous studies point to the neurotrophin brain-derived neurotrophic factor (BDNF), which is abundantly expressed by NTS-projecting primary sensory neurons, as a candidate mediator of NTS dendritogenesis. ⋯ Moreover, previously documented dramatic increases in NTS glial proliferation in victims of sudden infant death syndrome (SIDS) underscore the importance of our findings and the need to better understand the role of glia and their interactions with BDNF during NTS circuit maturation. Furthermore, while it has previously been demonstrated that the specific effects of BDNF on dendritic growth are context-dependent, the role of glia in this process is unknown. Thus, our data carry important implications for mechanisms of dendritogenesis likely beyond the NTS.
-
Early-life stress has been shown to increase susceptibility to anxiety and substance abuse. Disrupted activity within the anterior insular cortex (AIC) has been shown to play a role in both of these disorders. Altered serotonergic processing is implicated in controlling the activity levels of the associated cognitive networks. ⋯ Our data indicate that chronic alcohol consumption leads to greater AIC activity and may indicate a compensatory upregulation of presynaptic 5-HT(1A) receptors. Our results also indicate that AIC activity may be less effectively regulated by 5-HT in ethanol-naive NR animals than in NR monkeys in response to chronic ethanol self-administration. These data suggest possible mechanisms for increased alcohol seeking and possible addiction potential among young adults who had previously experienced early-life stress that include disruptions in both AIC activity and serotonin system dynamics.
-
We have recently found that the combination of ovariectomy (OVX) and chronic restraint stress (CS) causes hippocampal pyramidal cell loss and cognitive dysfunction in female rats and that estrogen replacement prevents the OVX/CS-induced morphological and behavioral changes. In this study, to clarify the mechanisms underlying the OVX/CS-mediated memory impairment further, we examined the roles of cholinergic systems in the OVX/CS-induced memory impairment in mice. Female Slc:ICR strain mice were randomly divided into two groups: OVX and sham-operated groups. ⋯ The cholinesterase inhibitors donepezil and galantamine ameliorated OVX/CS-induced memory impairment. These data suggest that cholinergic dysfunction may be involved in the OVX/CS-induced conditioned fear memory impairment. Overall, our findings suggest that the OVX/CS mouse model is useful to study the mechanisms underlying estrogen loss-induced memory deficits.
-
This study examines the causes of hypothermia and rewarming injury in CA1, CA3, and dentate neurons in rat hippocampal slice cultures. Neuronal death, assessed with propidium iodide or Sytox fluorescence, Fluoro-Jade labeling, and Cresyl Violet staining, depended on the severity and duration of hypothermia. More than 6 h at temperatures less than 12 °C followed by rewarming to 37 °C (profound hypothermia and rewarming, PH/RW) caused swelling and death in large number of neurons in CA1, CA3, and dentate. ⋯ We found that antagonism of N-methyl-D-aspartate (NMDA) receptors, but not 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl) propanoic acid or metabotropic glutamate receptors, decreased neuron death and prevented increases in [Ca(2+)](I) caused by PH/RW. Chelating extracellular Ca(2+) decreased PH/RW injury, but inhibiting L- and T-type voltage-gated Ca(2+) channels, K+ channels, Ca(2+) release from the endoplasmic reticulum, and reverse Na(+)/Ca(2+) exchange did not affect the Ca(2+) changes or cell death. We conclude that the mechanism of PH/RW neuronal injury in hippocampal slices primarily involves intracellular Ca(2+) accumulation mediated by NMDA receptors that activates necrotic, but not apoptotic processes.
-
The present study sought to investigate if p53 mediates autophagy activation and mitochondria dysfunction in primary striatal neurons in kainic acid (KA)-induced excitotoxicity. The excitotoxic model of primary striatal neurons was established with KA. The levels of p53, microtubule-associated protein 1 light chain 3 (LC3), Beclin1, and p62 were examined by Western blot and immunostaining. ⋯ Mito-tracker and RedoxSensor Red CC-1 staining showed an increased production of mitochondrial ROS after excitotoxic insult. These effects were significantly suppressed after pretreatment with PFT-α and 3-MA. This study suggests that p53 mediates KA-induced autophagy activation and mitochondrial dysfunction in striatal neurons.