Neuroscience
-
Although exposure to social stress leads to increased depression-like and anxiety-like behavior, some individuals are more vulnerable than others to these stress-induced changes in behavior. Prior social experience is one factor that can modulate how individuals respond to stressful events. In this study, we investigated whether experience-dependent resistance to the behavioral consequences of social defeat was associated with a specific pattern of neural activation. ⋯ Also, social status was associated with distinct patterns of defeat-induced neural activation in select brain regions, including the amygdala, prefrontal cortex, hypothalamus, and lateral septum. Our results indicate that social status is an important form of prior experience that predicts both initial coping style and the degree of resistance to social defeat. Further, the differences in defeat-induced neural activation suggest possible brain regions that may control resistance to conditioned defeat in dominant individuals.
-
Patients with homonymous hemianopia often show a contralesional shift towards their blind field when bisecting horizontal lines ('hemianopic line bisection error', HLBE). The reasons for this spatial bias are not well understood and debated. Eccentric fixation and adaptive orienting of eye movements towards the blind field have been suggested as hypothetical explanations but were not tested experimentally yet. ⋯ Finally, the size of the saccadic search field in the scotoma was not significantly correlated to the HLBE in hemianopia. We conclude that eccentric fixation, contralesional hyperattention or ipsilesional hypoattention, or good or poor oculomotor compensation of the field loss itself are not likely causes of the HLBE in chronic homonymous hemianopia. Implications of these findings and alternative explanations are discussed.
-
Alzheimer's disease (AD) is associated with beta-amyloid deposition, glial activation, and increased levels of the cytokines, as well as cholinergic dysfunction. Liver X receptor (LXR) has been found to inhibit the expression of pro-inflammatory genes. However, the effects of LXR activation on inflammatory response and on cholinergic system in AD are not yet clear. ⋯ LXR activation and nuclear factor kappa B (NF-κB) inhibitor PDTC both attenuated Aβ(25-35) induction of NF-κB activation. These results suggest that LXR agonists suppress the production of pro-inflammatory molecules, at least in part, by modulating NF-κB-signaling pathway. Collectively, these studies suggest that LXR agonists may have therapeutic significance in AD.
-
This is a study on associated postural activities during the anticipatory segments of a multijoint movement. Several previous studies have shown that they are task dependant. The previous studies, however, have mostly been limited in demonstrating the presence of modulation for one task condition, that is, one aspect such as the distance of the target or the direction of reaching. ⋯ This suggests that more specific modulations for the movement at hand take place through activation, whereas the deactivation is more general. The study introduces a new method for investigating adaptations in motor control. It also sheds new light on the quantity and quality of information available in the feedforward segments of a voluntary multijoint motor activity.
-
Tremor is one of the cardinal symptoms of Parkinson's disease. Up to now, however, its pathophysiology remains poorly understood. Previously, oscillatory coupling at tremor frequency between the subthalamic nucleus und affected muscles was shown. ⋯ Furthermore, the clinical effective stimulation site coincided with the location of most input causalities from the periphery in seven out of eight tremor-dominant patients. The data suggest that, although tremor activity in tremor-dominant and akinetic-rigid Parkinson's disease patients was clinically similar, statistical causality between tremor electromyogram (EMG) and the subthalamic nucleus was fundamentally different. Therefore, we hypothesize different pathophysiological mechanisms to underlie the generation of tremor in the two subtypes of Parkinson's disease.