Neuroscience
-
In contrast to mammals, in teleost fish radial glia persist beyond early development. This persistence parallels the enormous potential of teleosts to continuously generate a large number of new neurons in dozens of specific proliferation zones in the adult brain. In the present study, we characterized in the teleost fish Apteronotus leptorhynchus the immunological properties of radial glia in the corpus cerebelli-a cerebellar subdivision with particularly high proliferative activity-and examined their possible function in the guidance of migrating young neurons. ⋯ When the new cells reach the granular layer, they start expressing the neuronal marker protein Hu C/D, but continue their close association with radial glial fibers. These results suggest the role of radial glia in the guidance of migrating adult-born neurons in the teleostean cerebellum. This function appears to be mediated both by somal translocation and by a glial-guided mode of locomotion.
-
β-adrenergic receptors are a class of G protein-coupled receptors that have essential roles in regulating heart rate, blood pressure, and other cardiorespiratory functions. Although the role of β adrenergic receptors in the peripheral nervous system is well characterized, very little is known about their role in the central nervous system despite being localized in many brain regions involved in autonomic activity and regulation. Since parasympathetic activity to the heart is dominated by cardiac vagal neurons (CVNs) originating in the nucleus ambiguus (NA), β adrenergic receptors localized in the NA represent a potential target for modulating cardiac vagal activity and heart rate. ⋯ These decreases in neurotransmission to CVNs persisted in the presence of tetrodotoxin (TTX). These results provide a mechanism by which activation of adrenergic receptors in the brainstem can alter parasympathetic activity to the heart. Likely physiological roles for this adrenergic receptor activation are coordination of parasympathetic-sympathetic activity and β receptor-mediated increases in heart rate upon arousal.
-
Epileptogenesis following traumatic brain injury (TBI) is likely due to a combination of increased excitability, disinhibition, and increased excitatory connectivity via aberrant axon sprouting. Targeting these pathways could be beneficial in the prevention and treatment of posttraumatic epilepsy. Here, we tested this possibility using the novel anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypropionamide ((R)-lacosamide [LCM]), which acts on both voltage-gated sodium channels and collapsin response mediator protein 2 (CRMP2), an axonal growth/guidance protein. ⋯ Two weeks following injury, excitatory synaptic connectivity of cortical layer V pyramidal neurons was mapped using patch clamp recordings and laser scanning photostimulation of caged glutamate. In comparison with injured control animals, there was a significant decrease in the map size of excitatory synaptic connectivity in LCM-treated rats, suggesting that LCM treatment prevented enhanced excitatory synaptic connectivity due to posttraumatic axon sprouting. These findings suggest, for the first time, that LCM's mode of action involves interactions with CRMP2 to inhibit posttraumatic axon sprouting.
-
The objective of the present study was to assess the neuroprotective role of rutin (vitamin P) and delineate the mechanism of action. Recent evidence indicates that rutin exhibits antioxidant potential and protects the brain against various oxidative stressors. More precisely, the aim of the present study was to examine the modulating impacts of rutin against cognitive deficits and oxidative damage in intracerebroventricular-streptozotocin (ICV-STZ)-infused rats. ⋯ ICV-STZ rats showed significant cognitive deficits, which was improved significantly by rutin supplementation. The results indicate that rutin attenuates STZ-induced inflammation by reducing the expression of cyclooxygenase-2 (COX-2), glial fibrillary acidic protein (GFAP), interleukin-8 (IL-8), inducible nitric oxide synthase (iNOS), nuclear factor-kB, and preventing the morphological changes in hippocampus. The study thereby suggests the effectiveness of rutin in preventing cognitive deficits and might be beneficial for the treatment of sporadic dementia of Alzheimer type (SDAT).
-
The nucleus accumbens is a key region that mediates aspects of immediate and long-term adaptations to various stimuli. For example, both repeated amphetamine and pair-bonding increase dopamine D1 receptor binding in the nucleus accumbens of the monogamous prairie vole (Microtus ochrogaster). This upregulation has significant and stimulus-dependent behavioral consequences. ⋯ We hypothesized that isolation would lead to decreased levels of nucleus accumbens ΔfosB, as seen in other studies. However, neither opposite-sex cohabitation nor social isolation affected ΔfosB expression in the nucleus accumbens. These findings suggest that social stimuli, in contrast to drugs of abuse, are not mediators of ΔfosB in this region in prairie voles.