Neuroscience
-
The cellular prion protein (PrP(C)) is a neuronal-anchored glycoprotein that has been associated with several functions in the CNS such as synaptic plasticity, learning and memory and neuroprotection. There is great interest in understanding the role of PrP(C) in the deleterious effects induced by the central accumulation of amyloid-β (Aβ) peptides, a pathological hallmark of Alzheimer's disease, but the existent results are still controversial. ⋯ The protection against Aβ(1-40)-induced cognitive impairments observed in Tg-20 mice was accompanied by a significant decrease in the hippocampal expression of the activated caspase-3 protein and Bax/Bcl-2 ratio as well as reduced hippocampal cell damage assessed by MTT and propidium iodide incorporation assays. These findings indicate that the overexpression of PrP(C) prevents Aβ(1-40)-induced spatial learning and memory deficits in mice and that this response is mediated, at least in part, by the modulation of programed cell death pathways.
-
The glomeruli are the first synaptic relay on the olfactory pathway and play a basic role in smell perception. Glomerular degeneration occurs in humans with age and in Alzheimer's disease (AD). The glomeruli heavily express β-amyloid precursor protein (APP), β-secretase (BACE1) and γ-secretase complex. ⋯ Reduced glomerular area was detected in 6-12-month-old 5XFAD mice relative to non-transgenic controls, and in aged humans relative to young/adult controls, more robust in AD than aged subjects without cerebral amyloid and tau pathologies. The results suggest that olfactory nerve terminals may undergo age-related dystrophic and degenerative changes in AD model mice and humans, which are associated with increased labeling for amyloidogenic proteins but not local extracellular Aβ deposition. The identified axon terminal pathology might affect neuronal signal transmission and integration at the first olfactory synaptic relay.
-
Neuroligins are a family of cell adhesion molecules critical in establishing proper central nervous system connectivity; disruption of neuroligin signaling in vivo precipitates a broad range of cognitive deficits. Despite considerable recent progress, the specific synaptic function of neuroligin-1 (NL1) remains unclear. A current model proposes that NL1 acts exclusively to mature pre-existent synaptic connections in an activity-dependent manner. ⋯ Consistent with these findings, we observed profoundly greater recruitment of synapsin-positive presynaptic terminals by NL1 than SC1 in a mixed-culture assay of artificial synaptogenesis between primary neurons and heterologous cells. Collectively, our results contend multiple aspects of the proposed model of NL1 and SC1 function and motivate an alternative model whereby SC1 may mature synaptic connections forged by NL1. Supporting this model, we present evidence that combined NL1 and SC1 overexpression triggers excitotoxic neurodegeneration through SC1 signaling at synaptic connections initiated by NL1.
-
Maternal separation (MS) has been used to model the causal relationship between early life stress and the later stress-over-reactivity and affective disorders. Arginine vasopressin (AVP) is among several factors reported to be abnormal. The role of AVP on anxiety is still unclear. ⋯ Volumes of AVP-PVN and AVP-SON measured at PND75 had marked increases as well as AVP plasma concentration at 12h of water deprivation (WD). MS rats demonstrated a high conditioned anxious state under VCT paradigm whereas no difference was found under EPM. These data demonstrate direct relationships between enhanced AVP neuronal activation and a potentiated vasopressin system, and this latter one with high conditioned anxiety in MS male rats.
-
Cyclin-dependent kinase 5 (cdk5) participates in opioid receptor signalling through complex molecular mechanisms. The acute effects of selective μ-(fentanyl) and δ-(SNC-80) opioid receptor agonists, as well as the chronic effects of morphine (the prototypic opiate agonist mainly acting at μ-receptors), modulating cdk5 and activators p35/p25 and their interactions with neurotoxic/apoptotic factors, dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32) and extracellular signal-regulated kinase (ERK) were quantified (Western Blot analyses) in the rat corpus striatum and/or cerebral cortex. To assess the involved mechanisms, MDL28170 was used to inhibit calpain activity and SL327 to disrupt MEK (ERK kinase)-ERK activation. ⋯ Notably, chronic morphine treatment (10-100mg/kg for 6 days) also increased p25 content and p25/p35 ratio (and activated/inactivated MEK1) in rat brain cortex, which indicated that p25 upregulation persisted under the sustained stimulation of μ-opioid receptors. The results demonstrate that the acute stimulation of opioid receptors leads to upregulation of p25 activator through a MEK-ERK and calpain-dependent pathway, and to disruption of MEK-ERK signalling by a cdk5/p35-induced MEK1 inhibition. Moreover, the effects induced by the sustained stimulation of μ-receptors with morphine suggest the participation of cdk5/p25 complex in opiate-induced long-term neuroplasticity.