Neuroscience
-
Basal ganglia are a network of interconnected nuclei, involved in motor control, goal-directed behaviors and procedural learning. Basal ganglia process information from the cerebral cortex through three main pathways. The striatum is the input nucleus of the direct (cortico-striato-nigral) and indirect (cortico-striato-pallido-subthalamo-nigral) pathways while the subthalamic nucleus (STN) is the input structure of the hyperdirect (cortico-subthalamo-nigral) pathway. ⋯ STN stimulations evoked monosynaptic glutamatergic events in SNr neurons with a mean latency of 2.5 ms and a mean amplitude of 116 pA. This brain slice also preserved a part of the direct and indirect pathways such as the cortico-striatal connection. This novel slice configuration containing the hyperdirect pathway is a useful tool to better understand the transmission and plasticity in this pathway and hence the physiology and the pathophysiology of basal ganglia.
-
High frequency stimulation (HFS) has the potential to interfere with learning and memory. HFS and motor skill training both lead to potentiation of the stimulated network and alter motor map expression. However, the extent to which HFS can interfere with the learning and performance of a skilled motor task and the resulting effect on the representation of movement has not been examined. ⋯ Reach training alone was associated with an up-regulation of GABA(A)α1, α2, GluR2, NR1 and NR2A compared to controls. HFS and reach-trained rats showed an up-regulation of GABA(A)α2 compared to stimulated rats that were not reach-trained. Therefore, we have shown that HFS induces significant plasticity in the motor cortex, and has the potential to disrupt performance on a skilled motor task.
-
Psychiatric disorders are fairly common comorbidities of epilepsy in humans. Following pilocarpine-induced status epilepticus (SE), experimental animals not only developed spontaneous recurrent seizures, but also exhibited significantly elevated levels of aggressive behavior. ⋯ Treatment with rapamycin, a potent mTOR (mammalian target of rapamycin pathway)-pathway inhibitor, markedly diminished aggressive behavior. Therefore, the mTOR pathway may have significance in the underlying molecular mechanism leading to aggression associated with epilepsy.
-
Stressors encountered during the juvenile period may have persistent effects on later behavioral and neurochemical functioning and may influence later responses to stressors. In the current investigation, we evaluated the influence of stressor exposure applied during the juvenile period (26-28 days of age) on anxiety-related behavior, plasma corticosterone and on GABA(A) α2, α3, α5 and γ2 mRNA expression within the prefrontal cortex (PFC) and amygdala measured during adulthood. These changes were monitored in the absence of a further challenge, as well as in response to either a social or a non-social psychogenic stressor administered during adulthood. ⋯ The current results suggest that juvenile and adult stressor experiences elicit variations of GABA(A) receptor subunit expression that are region-specific as well as sexually-dimorphic. Stressful events during the juvenile period may have pronounced proactive effects on anxiety-related behaviors, but linking these to specific GABA(A) subunits is made difficult by the diversity of GABA changes that are evident as well as the dimorphic nature of these variations. Nevertheless, these GABA(A) sex-specific subunit variations may be tied to the differences in anxiety in males and females.
-
Minocycline has been reported to reduce infarct size after focal cerebral ischemia, due to an attenuation of microglia activation and prevention of secondary damage from stroke-induced neuroinflammation. We here investigated the effects of minocycline on endogenous neural stem cells (NSCs) in vitro and in a rat stroke model. Primary cultures of fetal rat NSCs were exposed to minocycline to characterize its effects on cell survival and proliferation. ⋯ We show that multimodal PET imaging can be used to characterize and quantify complex cellular processes occurring after stroke, as well as their modulation by therapeutic agents. We found minocycline, previously implied in attenuating microglial activation, to have positive effects on endogenous NSC survival. These findings hold promise for the development of novel treatments in stroke therapy.